

The Fraunhofer IESE Series on
Software and Systems Engineering

Series Editors

Dieter Rombach
Peter Liggesmeyer

Editorial Board

W. Rance Cleaveland II
Reinhold E. Achatz
Helmut Krcmar

.

J€urgen M€unch • Ove Armbrust •
Martin Kowalczyk • Martı́n Soto

Software Process
Definition and
Management

Jürgen Münch
University of Helsinki
Department of Computer Science
Helsinki
Finland

Martin Kowalczyk
Fraunhofer IESE
Kaiserslautern
Germany

Ove Armbrust
Alpine Electronics Research of America
Torrance, CA
USA

Martı́n Soto
eleven GmbH
Berlin
Germany

ISBN 978-3-642-24290-8 ISBN 978-3-642-24291-5 (eBook)
DOI 10.1007/978-3-642-24291-5
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2012936487

ACM Codes: D.2, K.6

Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts
in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being
entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication
of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center.
Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Foreword

One of the most significant contributions of the agile methods community has been

to put to rest the mistaken belief that there could be a one-size-fits-all software

process by which all software systems could be developed. The agilists not only

produced a family of process models that were clearly different from the traditional

single-pass, sequential, requirements-first models, and their attendant baggage, but

also they provided evidence of their successful application, often in situations in

which the traditional approaches had failed. Further, they were willing to admit

that their methods were not a panacea for all projects. For example, agilist Kent

Beck stated in his pioneering 1999 book, Extreme Programming Explained, that

“Size clearly matters. You probably couldn’t run an XP project with a hundred

programmers. Not fifty. Nor twenty, probably. Ten is definitely doable.” (As an

example of the pace of process technology, an increasing number of organizations

have successfully evolved Architected Agile processes using a combination of

architecting, XP practices, and a Scrum-of-Scrums approach to scale up to about

100-person teams—but not further to date).

Once one accepts that multiple types of processes are going to be needed for

different project situations, a whole new field of questions arises. What are the

process driver factors that lead projects toward more agile, more plan-driven, more

risk- and value-based, or other methods? How does the existence of large, cost-

effective, but often incompatible COTS products or cloud services affect a project’s

processes? What sort of processes best fit a project that must provide high levels of

confidentiality, integrity, and availability assurance while being rapidly adaptable

to high rates of change? How do factors such as corporate or national cultures affect

a project’s choice of processes? How does a project cope with the need to integrate

different process models being used in different parts of the project? How does an

organization evolve from an opportunistic quick-to-market process as a startup, to

a high-assurance process once the product has a large customer base to satisfy?

How does an organization evaluate the maturity and domain of applicability of new

process approaches?

The number, variety, and importance of such process questions have caused

many organizations to appreciate the need for a much broader and adaptable

v

approach to software processes, including standards groups, professional societies,

the Software Engineering Institute, and some government organizations. But there

is a large amount of inertia to overcome, in terms of traditional standards, guide-

lines, contracting mechanisms, entrenched bureaucracies, and course curricula.

Thus, there is a great need for well-organized guidance about the properties and

areas of strength and weakness of various classes of software and system develop-

ment and life cycle processes.

This book provides a major step forward in providing such guidance. It is written

by authors with a wide variety of experience in commercial, industrial, government,

and entrepreneurial software processes. It provides an organized approach for

addressing the questions above, and numerous other questions, by describing and

distinguishing among various classes of process technology such as prescriptive

and descriptive processes, process modeling and simulation languages and tools,

experimental and observational process evaluation approaches, and process

improvement approaches.

Following the Osterweil “Software processes are software too” insight about the

duality between software products and processes, the book addresses software

process counterparts to software product technologies such as software process

requirements engineering, architecting, developing, evolving, execution control,

validation and verification, and asset reusability. It provides good illustrative

examples of their use, well-worked-out definitions of process terms, and ques-

tion-and-answer assignments for use in teaching software process engineering to

students or practitioners.

As a bottom line, this book has arrived at an opportune time to help many

classes of software-reliant people and organizations learn how to cope with a

multiparadigm software process world. These include software-reliant enterprise

managers and their staffs; software-intensive project managers, systems engineers,

and developers; academic faculty researchers and teachers; and a growing body of

next-generation software process engineers. If you fit into any of these classes,

I believe that you will benefit greatly from reading this book and having it around

for future reference.

Los Angeles, CA, USA Barry Boehm

vi Foreword

Preface

The concept of processes is at the heart of software and systems engineering.

Software process models integrate software engineering methods and techniques

and are the basis for managing large-scale software and IT projects. High product

quality routinely results from high process quality. Process management deals with

getting and maintaining control over processes and their evolution.

Who Should Read this Book?

This book is aimed at students in undergraduate and graduate courses, at practi-

tioners who are interested in process definition and management for developing,

maintaining, and operating software-intensive systems and services, and at

researchers. Readers of this book should have basic familiarity with software

development.

1. Students. The book can be used in general software engineering courses, in

specialized process management courses, or in courses such as software project

management, software quality management, software process improvement, or

software measurement. The book may also be interesting for students who want

to get a focused introduction to software process management, but would rather

avoid general software engineering textbooks that typically present comprehen-

sive process models with canned technology or nonintegrated development

techniques.

2. Practitioners such as project managers, process engineers, or consultants.
Practitioners may find the book useful as general reading in order to become

familiar with the topic, for updating their knowledge, for understanding the

relationships between process management and other aspects of their daily

work, and for better assessing the relevance of the topic. Besides project

managers, the book is especially relevant for process engineers, consultants,

software engineers, SEPG members, members of process improvement groups,

vii

heads of software development departments, quality managers, project planners,

and coaches.

3. Researchers. Although the maturity of software process management practices

in industry has increased and the state of software process research has

advanced, the field is still quite immature. Students, practitioners, as well as

researchers should be aware of the limitations of existing process management

technologies, know the deficiencies of existing process models, and understand

unsolved problems in the field. There is still a long road ahead toward mature

software process management. We challenge software process researchers to

address the vision that by using an appropriate combination of process and

product engineering techniques, value creation for customers, adherence to

cost and schedule constraints, and the fulfillment of quality requirements can

be guaranteed on the basis of empirical facts.

Why a Textbook on Process Definition and Management?

One might argue that there are already many textbooks that include descriptions

of software process models. The answer is “yes, but.” Becoming acquainted with

existing software process models is not enough. It is tremendously important to

understand how to select, define, manage, deploy, evaluate, and systematically

evolve software process models so that they appropriately address the problems,

applications, and environments to which they are applied. Providing basic knowl-

edge for these important tasks is the main goal of this textbook. There are many

reasons that argue for a software process textbook:

Industry is in search of software process management capabilities. The emergence

of new job profiles in the software domain (such as the agile coach, ScrumMaster,

process engineer, or offshore development coordinator), the lean and agile trans-

formation of many organizations, and the establishment of so-called Software

Engineering Process Groups emphasize the industry’s need for employees with

software-specific process management capabilities. Most of today’s products and

services are based to a significant degree on software and are the results of large-

scale development programs. The success of such programs heavily depends on

process management capabilities, because they typically require the coordination

of hundreds or thousands of developers across different disciplines. Additionally,

software and system development is usually distributed across different sites

and time zones. To make things even more complex, technical and business

environments as well as project goals often change during project execution,

and an organization has to react to this in a controlled manner. The situation is

similarly complex for operation and maintenance projects. Can such endeavors be

mastered by using nothing but the appropriate software development and quality

assurance techniques? The answer is “no, not at all.” Analyses of large-scale

development programs have shown that, with few exceptions, the reasons for the

viii Preface

failure of such programs were not technical [1]. They almost always fail due to

management problems. Due to the fact that process models glue together all

activities, products, and resources, the relevance of process models for project

management and especially for the success of large-scale software development

programs is enormous. This need for process management capabilities is

contrasted by the typical capabilities of young software engineering professionals.

Such first-time employees are usually skillful with respect to software techniques

such as coding or testing, but only have a marginal command of process manage-

ment knowledge. This book provides basic building blocks of process manage-

ment, such as process modeling or improvement, in order to lay a solid foundation

for successful, sustainable processes.

Professional software engineers must fulfill process obligations. The duties of

professional software engineers with respect to adherence to process models are

becoming increasingly important. In order to illustrate this, let us compare

a program that is developed by a student and a program that is developed by a

software organization: Student programs usually solve small problems and are

built to demonstrate that they work. If a student program fails, the consequences

are limited. The student might not see the advantages of following a defined

process because he does not coordinate his tasks with others and defects can be

fixed without further consequences. If we consider the development of a soft-

ware program by professional developers in a company, the situation is quite

different: Each developer’s personal work needs to be coordinated with the work

of others; there is a customer paying for it, and the customer’s business might

depend on the resulting software. Thus, quality requirements are very important

and the effects of potential failures are more serious or not tolerable at all. This

means that there is often no way to avoid the definition, deployment, and control

of high-quality development, operation, and maintenance processes. It is not

sufficient anymore that a developer or a development team is convinced that

specific quality requirements are fulfilled. Other parties such as customers

also need to be convinced. Adherence to state-of-the-art processes and process

management practices plays a crucial role when it comes to convincing others or

even proving to them that quality requirements are fulfilled. This book explains

different approaches to process improvement and conformance in order to

support practitioners with respect to fulfilling process obligations.

Applicable knowledge from other disciplines is missing. Knowledge from other

disciplines such as production engineering or business process management has

only limited applicability for the software domain. One main reason is that

production and business processes are typically repetitive processes in the

sense that the same, well-understood process is enacted again and again with

no or only minor variations. Quality assurance, for instance, is typically treated

in production engineering and business management as the planning and deploy-

ment of a stable production or business process. Quality requirements can be

fulfilled under given organizational constraints by just repeating this process.

The situation is significantly different in software engineering: Software devel-

opment is always the creation of an individual product. Therefore, process

Preface ix

management cannot be based on the paradigm of repeatable processes. Quality

cannot be achieved by just repeating processes. In the software domain, process

and quality models need to be adaptable to individual development projects.

There are no software development processes that fit for all types of projects or

development environments. Consequently, approaches and techniques from

production engineering or business process management (such as Statistical

Process Control) cannot be transferred without difficulties. Sometimes they are

useful when adapted appropriately. People who only have a production engi-

neering or economic science background lack important capabilities for managing

software projects and software processes. Software-specific process management

capabilities are needed. This book introduces proven software-specific approaches

to process management in order to support software engineers in their projects.

How Is the Book Organized?

Process management can be roughly divided into three areas: activities, infrastruc-

ture, and models (Fig. 1). Process management activities (left column in Fig. 1) can

be seen as central: They consume, create, or modify different kinds of models

(bottom part of Fig. 1), and are supported by a process management infrastructure

(right column of Fig. 1).

The rationale for structuring the book is as follows (see middle part of Fig. 1):

The basic concepts are given at the beginning. Afterward, existing representative

process models are presented in order to give the reader an idea of what kinds of

models exist and what they look like. A description of how to create individual

models follows, and the necessary means for creating models (i.e., notations and

tools) are described. Finally, different possible usage scenarios for process man-

agement are given (i.e., process improvement, empirical studies, and software

process simulation).

Many books present practices, individual process models, or process standards

in rich detail. However, there is often no description of how to customize these

process models to a specific environment in a systematic way, information about

the effects in specific project environments is not provided, and underlying

assumptions are not true for many real situations (e.g., the assumption that devel-

opment is performed in a colocated manner). As a consequence, project managers

do not learn enough to assess the suitability of the presented models with respect to

their own project goals and environments. Process engineers do not learn enough

about how to customize or design appropriate models. In this textbook, we aim at

providing knowledge that enables readers to develop useful process models that are

suitable for their own purposes. In other words, the emphasis is not on working with

given process models but on developing useful process models. Therefore, this

textbook includes aspects such as descriptive modeling, continuous improvement,

empirical studies, simulation, and measurement.

x Preface

Reading. Although the chapters are self-contained, we recommend reading

the book in a sequential order. Each book chapter starts with a short summary

and a description of the chapter objectives. For each chapter, literature references,

associated exercises, and sample solutions are given. The exercises aim at repeating

and refining the material. They help the reader to get a better understanding and

think about the contents from different perspectives. In addition, a glossary and an

Process
Management

Project
Management

Product
Management

Quality
Management

Resource
Management

Software Engineering Management

Maturity
Models

Quality
Models

Product
Models

Resource
Models

Economic
Models

Models

Activities

Select, Apply and
Deploy Process Models

Design Process
Models

Describe Process
Models

Assessand Improve
Processes

Understand
Process Effects

Introduction

Prescriptive
Process Models

Descriptive
Process Models

Process Modeling
Notations and Tools

Analyze Process
Behavior

Process Improvement

Empirical Studies

Software Process
Simulation

Book Chapters Infrastructure

Modeling Concepts

Languages and Tools

Empirical Methods

Simulators

… …

Lifecycle
Process Models

Engineering
Process Models

Business
Process Models

Social
Process Models

Process Models

covered in this book = consists of = use, create, or modify

Fig. 1 Structuring of software process management

Preface xi

index are given so that the book can also be used as a reference book. The chapters

focus on the following topics:

Introduction. In this chapter, the need for software process management

and process models is motivated and the basic concepts and terminology are

presented.

Prescriptive Process Models. In this chapter, prescriptive software process

models are classified, a number of widely used process standards is introduced,

two types of process representations are introduced (process handbooks and

electronic process guides), and an exemplary deployment strategy is described.

This helps to get an overview of existing models, to understand their advantages

and disadvantages, and to get an understanding of what it means to select and

deploy a process model.

Descriptive Process Models. In this chapter, a method is described for designing

a process model based on observing current practices in an organization. Due to

the fact that software engineers only change their behavior in small increments,

the design of process models should start with or incorporate current practices of

an organization. Deploying a process model that is too distant from currently

lived practices implies high risks of nonacceptance. In addition, it is immensely

important that the documented processes in an organization reflect the current

practices. Quoting Watts Humphrey, “if you don’t know where you are, a map

won’t help”—meaning that improving processes efficiently requires an under-

standing of the current practices. Therefore, this chapter puts a focus on descrip-

tive process modeling for creating process models that match their counterparts in

reality.

Process Modeling Notations and Tools. In this chapter, a characterization

scheme for process modeling notations is given and selected notations are

presented. One of the aims of this chapter is to show that different notations

serve specific purposes differently, and that it is necessary to carefully consider

which notation to choose. The so-called multi-view process modeling language,

MVP-L, is described in more detail as an example of a notation that provides

comprehensive modeling concepts. In addition, a reference framework for a

process engineering tool infrastructure and an example tool are presented.

Process Improvement. In this chapter, different types of process improvement

and assessment frameworks are presented, especially continuous and model-

based approaches. In addition, selected software measurement and business

alignment approaches are presented due to their significant role for process

improvement.

Empirical Studies. In this chapter, a brief overview is given on how to determine

the effects of a process model in a concrete environment. Such effects can be, for

instance, the reliability of a developed code module, the defect detection rate of

an inspection process, or the effort distribution of a life cycle process model.

Software processes are, to a large extent, human-based and consequently non-

deterministic. In addition, they are heavily context-dependent, i.e., their effects

vary with the development environment. Therefore, empirical studies of

xii Preface

different types are needed to understand and determine the effects of processes

and to analyze risks when changing processes or introducing new ones.

Process Simulation. In this chapter, process simulation is introduced as a means

for analyzing process dynamics. It is shown how simulation models can be

created and how they can be combined with empirical studies to accelerate

process understanding and improvement. In addition, a library of existing

model components ready for reuse is introduced.

What Are the Benefits for the Reader?

Readers will gain knowledge and skills for designing, creating, analyzing, and

applying software and systems development processes. In particular, the essential

learning objectives of the book are:

– Understanding the importance of software processes and software process

improvement

– Becoming acquainted with industrial software and system development pro-

cesses and process standards

– Understanding the advantages and disadvantages of different process manage-

ment techniques and process modeling notations

– Getting basic knowledge for modeling and analyzing software and system

development processes

– Being aware of process management activities in software-related organizations

After studying the book’s contents, readers will be able to contribute to process

management activities, especially to applying common methods and notations

for process modeling, designing software development processes, defining process

improvement goals, selecting software process improvement approaches, partici-

pating in improvement programs, increasing process maturity, assessing processes,

and evaluating processes by performing empirical studies.

Who Are the Authors?

The foci of this book were selected based on the comprehensive process manage-

ment and software engineering experience of the authors. Although this book is

intended as a general introduction to software process definition and management,

it places an emphasis on specific areas, whereas others might highlight different

aspects. The authors of this book have defined many organizational process

standards, were involved in a multitude of industrial software process improvement

programs, and have conducted many empirical studies of different types. They have

produced national and international process standards for organizations such as the

European Space Agency (ESA), the Japan Aerospace Exploration Agency (JAXA),

Preface xiii

and other governmental authorities. Some of the authors defined process assessment

models and acted as certified process assessors for different schemes such as

ISO/IEC 15504. Research-wise, the authors have developed, deployed, and

evaluated a multitude of process management methods, techniques, and tools,

including technologies for multi-view process modeling, process scoping, process

tailoring, process compliance management, process visualization, and process

evolution. All authors can draw on several years of experience as members of

a process management division at a leading institute for applied research and

technology transfer. They have helped many companies worldwide to improve

their software development processes and their software process management.

The authors also have significant experience in teaching software process manage-

ment, be it by giving lectures at a university, in-house tutorials, or public seminars.

The material presented in this book has been used, for instance, many times in a

graduate process modeling course at the University of Kaiserslautern, Germany,

and in a course of an accredited international distance education master program.

One of the authors held several management positions in the area of process

management, including being the head of a process engineering and technology

group, the head of a process and measurement department, and the head of a process

management division. In addition, the authors have served the scientific community

in several ways such as co-organizing and contributing to the International Confer-

ence on Software and System Process (ICSSP), the International Conference on

Product Focused Software Development and Process Improvement (PROFES), and

the International Symposium on Empirical Software Engineering and Measurement

(ESEM).

Helsinki, Finland J€urgen M€unch
Torrance, CA, USA Ove Armbrust

Kaiserslautern, Germany Martin Kowalczyk

Berlin, Germany Martı́n Soto

Reference

[1] Humphrey WS, Konrad MD, Over JW, Peterson WC (2007) Future directions

in process improvement. Crosstalk J 20(2):17–22

xiv Preface

