
CHAPTER 2

Preliminary Material

2.1 Introduction

This chapter describes the modelling and analysis tools that will be used
throughout the book. They all concern Linear Time Invariant systems or trans-
fer functions and can be classified in three categories.

Closed-loop system representation and analysis: We briefly define two
possible representations of a system G0 in closed loop with some stabilising
controller K. The first one is a general representation based on a standard
block-diagram description of the closed loop (Section 2.2) and on which
we shall base the notions of closed-loop stability and generalised stability
margin. The second one is based on a linear fractional transformation (LFT)
(Section 2.3), which is sometimes more convenient for the manipulation of
multivariable closed-loop systems or for robust control design and analysis.
We show, in Section 2.3, that any closed-loop system represented by means
of an LFT can be put in the general form defined in Section 2.2, allowing
use of standard stability analysis tools.

Linear systems analysis: Two important tools are presented. The first one
is coprime factorisation (Section 2.4). A coprime factorisation is a way of
representing a possibly unstable transfer function or matrix by two stable
ones (a numerator and a denominator) with particular properties related,
e.g., to closed-loop stability. Procedures are given to build such (possibly
normalised) factorisations. It is also shown how the generalised closed-loop
transfer matrix of a system can be expressed in function of the plant and
controller coprime factors. The second tool is the ν-gap metric between
two transfer functions (Section 2.5). It is a control-oriented measure of the
distance between two transfer functions or matrices, of great importance for
robustness analysis.

System modelling: The two classical black-box modelling tools that we con-
sider in this book are prediction-error identification and balanced truncation.
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The first one, described in Section 2.6, uses data measured on the actual
plant to compute the best model of this plant in some set of parametrised
transfer functions, with respect to a criterion that penalises the prediction
errors attached to this model. The second one, described in Section 2.7, is
a tool aimed to reduce the order of a given linear high-order model of the
plant (obtained, for instance, by identification, first-principles-based physi-
cal modelling, finite-element modelling, or linearisation of a nonlinear simu-
lator) to derive a lower order model, or of any high-order transfer function,
by discarding the least controllable and observable modes. It will be used
to design low-order controllers for high-order processes.

2.2 General Representation of a Closed-loop System and
Closed-loop Stability

2.2.1 General Closed-loop Set-up

Let us consider a (possibly multi-input multi-output) linear time-invariant sys-
tem described by

y(t) = G0(z)u(t) + v(t) or y(t) = G0(s)u(t) + v(t) (2.1)

where G0(z) (discrete-time case) or G0(s) (continuous-time case) is a ratio-
nal transfer function or matrix. Here, z−1 is the backward shift operator1

(z−1x(t) = x(t− 1) with t expressed in multiples of the sampling period) and
s is the time differentiation operator (sx(t) = ẋ(t)). u(t) is the input of the
system, y(t) its output, v(t) an output disturbance.

We shall often consider the representation of Figure 2.1 when the plant G0

operates in closed loop with a controller K. In this representation, r1(t) and
r2(t) are two possible sources of exogenous signals (typically, r1(t) will be a
reference or set-point signal for y(t), while r2(t) will be either a feed-forward
control signal or an input disturbance). g(t) and f(t) denote respectively the
input and the output of the controller.

1The time-domain backward shift operator used in discrete-time systems is often repre-
sented by q−1 in the literature, while the notation z is generally used for the corresponding
frequency-domain Z-transform variable. Here, for the sake of simplicity and although math-
ematical rigour would require such distinction, we shall use the same notation for both the
operator and the variable. Similarly, the time differentiation operator used in continuous-
time systems is often represented by p, but we shall make no distinction between it and the
frequency-domain Laplace-transform variable s.



2.2 General Representation of a Closed-loop System and Closed-loop Stability 9

G0

K

� �

�

� � �

��

�
�

�

�+
− +

+

−
+

r2(t) u(t)

f(t)

y(t)

r1(t)

v(t)

g(t)

Figure 2.1. General representation of a system in closed loop

2.2.2 Closed-loop Transfer Functions and Stability

In mainstream robust control, the following generalised closed-loop transfer
matrices are often considered2:

Ti(G0, K) =
[−I G0

K I

]−1

+
[
I 0
0 0

]

=

[
G0(I +KG0)−1K G0(I +KG0)−1

(I +KG0)−1K (I +KG0)−1

]
(2.2)

and

To(G0, K) =
[−I K
G0 I

]−1

+
[
I 0
0 0

]

=

[
K(I +G0K)−1G0 K(I +G0K)−1

(I +G0K)−1G0 (I +G0K)−1

]
(2.3)

The entries of Ti(G0, K) are the transfer functions between the exogenous refer-
ence signals and the input and output signals of the plant defined in Figure 2.1:[

y(t)
u(t)

]
= Ti(G0, K)

[
r1(t)
r2(t)

]
+Ni(G0, K)v(t) (2.4)

where

Ni(G0, K) =
[

(I +G0K)−1

−(I +KG0)−1K

]
(2.5)

(the entry (I + G0K)−1 is called the closed-loop sensitivity function of the
system), while those of To(G0, K) are the transfer functions between the ex-
ogenous reference signals and the output and input signals of the controller:[

f(t)
g(t)

]
= To(G0, K)

[
r2(t)
−r1(t)

]
+No(G0, K)v(t) (2.6)

2All transfer functions and matrices must be understood as rational functions of z (discrete-
time case) or s (continuous-time case). However, when no confusion is possible, we shall
often omit these symbols to ease the notations.
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where

No(G0, K) =
[
K(I +G0K)−1

(I +G0K)−1

]
(2.7)

In the SISO case, we define more simply

T (G0, K) =

⎡
⎢⎢⎢⎣

G0K

1 +G0K

G0

1 +G0K

K

1 +G0K

1
1 +G0K

⎤
⎥⎥⎥⎦ �

[
T11 T12

T21 T22

]
(2.8)

and

N(G0, K) =

⎡
⎢⎢⎣

1
1 +G0K

−K
1 +G0K

⎤
⎥⎥⎦ =

[
T22

−T21

]
�
[

S
−KS

]
�
[
N1

N2

]
(2.9)

so that [
y(t)
u(t)

]
= T (G0, K)

[
r1(t)
r2(t)

]
+N(G0, K)v(t) (2.10)

Definition 2.1. (Internal stability) The closed loop (G0, K) of Figure 2.1
is called ‘internally stable’ if all four entries of Ti(G0, K) or, equivalently, all
four entries of To(G0, K), are stable, i.e., if they belong to H∞.

The generalised stability margin bG0,K is an important measure of the internal
stability of the closed loop. It is defined as

bG0,K �
{
‖Ti(G0, K)‖−1

∞ if (G0, K) is stable
0 otherwise

(2.11)

Note that ‖Ti(G0, K)‖∞ = ‖To(G0, K)‖∞, as shown in (Georgiou and Smith,
1990). An alternative definition, in the SISO case, is the following:

bG0,K = min
ω
κ

(
G0(ejω),

−1
K(ejω)

)
(2.12)

where κ
(
G0(ejω), −1

K(ejω)

)
is the chordal distance at frequency ω between G0

and −1
K(ejω) , as defined in (Vinnicombe, 1993a): see Section 2.5.

The margin bG0,K plays an important role in robust optimal control design.
The following results hold in the SISO case (Vinnicombe, 1993b):

gain margin ≥ 1 + bG0,K

1 − bG0,K
(2.13)

and

phase margin ≥ 2 arcsin (bG0,K) (2.14)
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Note that there is a maximum attainable value of the generalised stability
margin bG0,K over all controllers stabilising G0 (Vinnicombe, 1993b):

sup
K
bG0,K =

√
1 − λmax(PrcfQrcf ) =

√
1 −
∥∥∥∥
[
N0

M0

]∥∥∥∥2
H

(2.15)

and (Georgiou and Smith, 1990)

sup
K
bG0,K ≤ inf

z∈D
+
1

or
s∈C

+
0

σ

([
N0

M0

])
(2.16)

Here,
[

N0
M0

]
is a normalised right coprime factorisation of G0 (see Section 2.4).

Prcf and Qrcf are, respectively, the controllability and observability Gramians

(see Section 2.7) of the right coprime factors
[

N0
M0

]
. ‖·‖H denotes the Hankel

norm. It should be clear that it is easier to design a stabilising controller for a
system with a large supK bG0,K than for a system with a small one.

We refer the reader to (Zhou and Doyle, 1998) and references therein for more
detail about the links between the generalised stability margin and controller
performance.

The following proposition will be used several times throughout this book.

Proposition 2.1. (Anderson et al., 1998) Let (G0, K) and (G, K) be two
stable closed-loop systems such that

‖Ti(G, K) − Ti(G0, K)‖∞ < ε (2.17a)

or, equivalently,

‖To(G, K) − To(G0, K)‖∞ < ε (2.17b)

for some ε > 0. Then,

|bG,K − bG0,K | < ε (2.18)

It tells us that the stability margin achieved by a controller K connected to a
system G will be close to that achieved by the sameK with G0 if the closed-loop
transfer matrices Ti(G, K) and Ti(G0, K) are close in the H∞ norm.

2.2.3 Some Useful Algebra for the Manipulation of Transfer Matrices

The following relations are very useful when it comes to manipulating closed-
loop transfer matrices.
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A. Block-matrix inversion.[
A B
C D

]−1

=
[
A−1 +A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

]
(2.19)

provided A and D are square, and A and (D − CA−1B) are invertible.

B. Other formulae.

A(I +BA)−1 = (I +AB)−1A (2.20a)

BA(I +BA)−1 = (I +BA)−1BA

= B(I +AB)−1A

= I − (I +BA)−1 (2.20b)

2.3 LFT-based Representation of a Closed-loop System

In the MIMO case, it is often easier to represent a closed-loop system using
Linear Fractional Transformations, as depicted in Figure 2.2, where Γ0 is called
the generalised plant and Q the generalised controller.

Γ0 =
[
Γ11 Γ12

Γ21 Γ22

]

Q

� �

�

�

z(t) w(t)

h(t) l(t)

Figure 2.2. LFT representation of a system in closed loop

In this representation, all exogenous signals are contained in w(t). l(t) is the
control signal and h(t) is the input of the controller Q, e.g., l(t) = f(t) and
h(t) = g(t) if Q = K. z(t) contains all inner signals that are useful for the
considered application. For instance, if the objective is to design a control
law for the tracking of the reference signal r1(t), z(t) will typically contain the
tracking error signal g(t) = y(t)− r1(t) and, possibly, the control signal f(t) if
the control energy is penalised by the control law.

The closed-loop transfer function between w(t) and z(t) is given by

Tzw = Fl (Γ0, Q) � Γ11 + Γ12Q(I − Γ22Q)−1Γ21 (2.21)
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This representation can easily be transposed into the standard one of Figure 2.1
as we now show by means of three examples.

� Example 2.1. A single-degree-of-freedom controller K is used, and the signals of
interest are the tracking error g(t) and the control signal f(t). Let us set

Q = K

z(t) = col
(
f(t), g(t)

)
w(t) = col

(
r2(t), −r1(t), v(t)

)
h(t) = g(t) l(t) = f(t)

Γ11 =

[
0 0 0

G0 I I

]
Γ12 =

[
I

−G0

]
Γ21 =

[
G0 I I

]
Γ22 =

[−G0

]
in Figure 2.2. Then,

Tzw(Γ0, Q) =
[
To(G0, K) No(G0, K)

]
�

� Example 2.2. A single-degree-of-freedom controller K is used, and the signals of
interest are the output y(t) and the control signal u(t). Let us consider Figure 2.2
and set

Q = K

z(t) = col
(
y(t), u(t)

)
w(t) = col

(
r1(t), r2(t), v(t)

)
h(t) = g(t) l(t) = f(t)

Γ11 =

[
0 G0 I
0 I 0

]
Γ12 =

[−G0

−I

]
Γ21 =

[−I G0 I
]

Γ22 =
[−G0

]
In this case,

Tzw(Γ0, Q) =
[
Ti(G0, K) Ni(G0, K)

]
�

� Example 2.3. A two-degree-of-freedom controller C =
[
K F

]
is used and the

signals of interest are the output y(t) and the control signal u(t). The control law is

u(t) = Fr2(t) − Kg(t)
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If we set

Q = C =
[
K F

]
z(t) = col

(
y(t), u(t)

)
w(t) = col

(
v(t), r1(t), r2(t)

)
h(t) = col

(−g(t), r2(t)
)

l(t) = u(t)

Γ11 =

[
I 0 0
0 0 0

]
Γ12 =

[
G0

I

]

Γ21 =

[−I I 0
0 0 I

]
Γ22 =

[−G0

0

]
we find that

Tzw(Γ0, Q) =

[
Ni(G0, K) Ti(G0, K)

[
I 0
0 F

]]
Observe that it is possible to rewrite

Ti(G0, K)

[
I 0
0 F

]
=

[
I 0 0
0 0 I

]
Ti

([
G0

0

]
,
[
K F

]) ⎡
⎣I 0

0 I
0 0

⎤
⎦

with 0 matrices of appropriate dimensions, which can be convenient if one desires to

treat
[
K F

]
as a single object C, for instance if F and K share a common state-

space representation. �

2.4 Coprime Factorisations

2.4.1 Coprime Factorisations of Transfer Functions or Matrices

We shall often use left and right coprime factorisations of systems and con-
trollers in the sequel. Here, we define formally the notion of coprimeness and we
explain how to compute the coprime factors of a dynamic system. Details can
be found in, e.g., (Francis, 1987), (Vidyasagar, 1985, 1988) and (Varga, 1998).

Definition 2.2. (Coprimeness) Two matrices M̃ and Ñ in RH∞ are left
coprime over RH∞ if they have the same number of rows and if there exist
matrices Xl and Yl in RH∞ such that[

M̃ Ñ
] [Xl

Yl

]
= M̃Xl + ÑYl = I (2.25)

Similarly, two matrices M and N in RH∞ are right coprime over RH∞ if
they have the same number of columns and if there exist matrices Xr and Yr

in RH∞ such that [
Yr Xr

] [N
M

]
= YrN +XrM = I (2.26)

Definition 2.3. (Left coprime factorisation) Let P be a proper real ra-
tional transfer matrix. A left coprime factorisation of P is a factorisation
P = M̃−1Ñ where M̃ and Ñ are left coprime over RH∞.
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If P has the following state-space realisation:

P =
[
A B
C D

]
(2.27a)

i.e.,

P (s) = C(sI −A)−1B +D (continuous-time case) (2.27b)

or

P (z) = C(zI −A)−1B +D (discrete-time case) (2.27c)

with (A, C) detectable3, a left coprime factorisation
[
Ñ M̃

]
can be con-

structed according to the following proposition.

Proposition 2.2. Let (A, B, C, D) be a detectable realisation of a transfer
matrix P , let L be any constant injection matrix stabilising the output of P and
let Z be any nonsingular matrix. Define[

Ñ M̃
]

=
[
A+ LC B + LD L
ZC ZD Z

]
(2.28)

i.e., (continuous-time case)[
Ñ(s) M̃(s)

]
= ZC

(
sI − (A+ LC)

)−1 [
B + LD L

]
+
[
ZD Z

]
(2.29a)

or (discrete-time case)[
Ñ(z) M̃(z)

]
= ZC

(
zI − (A+ LC)

)−1 [
B + LD L

]
+
[
ZD Z

]
(2.29b)

Then,
[
Ñ M̃

] ∈ RH∞ and

P = M̃−1Ñ (2.30)

A normalised left coprime factorisation, i.e., a left coprime factorisation such
that ÑÑ	 + M̃M̃	 = I, can be obtained as follows.

Proposition 2.3. Let (A, B, C, D) be a detectable realisation of a continuous-
time transfer matrix P (s). Define

[
Ñ M̃

]
=

[
A+ LC B + LD L

JC JD J

]
(2.31)

where

L = −(XCT +BDT
)
R̃−1 (2.32)

J = R̃−1/2 (2.33)

3The pair (A, C) is called detectable if there exists a real matrix L of appropriate dimensions
such that A + LC is Hurwitz, i.e., if all eigenvalues of A + LC have a strictly negative real
part: Re(λi(A + LC)) < 0.
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X is the stabilising solution of the following Riccati equation:(
A−BDT R̃−1C

)
X +X

(
A−BDT R̃−1C

)T
−X

(
CT R̃−1C

)
X +BR−1BT = 0 (2.34)

and

R = I +DTD (2.35)

R̃ = I +DDT (2.36)

Then,
[
Ñ(s) M̃(s)

] ∈ RH∞,

∀ω Ñ(jω)Ñ	(jω) + M̃(jω)M̃	(jω) = I (2.37)

and
P (s) = M̃−1(s)Ñ(s) (2.38)

� Remark. The same result holds in the discrete-time case with X the stabilising
solution of the following discrete algebraic Riccati equation:

X = AXAT + BBT − (
AXCT + BDT )(

R̃ + CXCT )−1(
CXAT + DBT ) (2.39)

and L and J respectively given by

L = −(
AXCT + BDT )(

R̃ + CXCT )−1
(2.40)

and

J =
(
R̃ + CXCT )−1/2

(2.41)

�

Definition 2.4. (right coprime factorisation) Let P be a proper real
rational transfer matrix. A right coprime factorisation of P is a factorisation
P = NM−1 where N and M are right coprime over RH∞.

If P is stabilisable4, such a right coprime factorisation can be constructed as
follows.

Proposition 2.4. Let (A, B, C, D) be a stabilisable realisation of a transfer
matrix P , let F be any constant feedback matrix stabilising P and let Z be any
nonsingular matrix. Define[

N
M

]
=

⎡
⎣ A+BF BZ
C +DF DZ

F Z

⎤
⎦ (2.42)

4A transfer matrix P with realisation (A, B, C, D) is stabilisable if the pair (A, B) is stabil-
isable, i.e., if there exists a real matrix F of appropriate dimensions such that A + BF
is Hurwitz, meaning that all eigenvalues of A + BF have a strictly negative real part:
Re(λi(A + BF )) < 0.
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i.e., (continuous-time case)[
N(s)
M(s)

]
=
[
C +DF

F

] (
sI − (A+BF )

)−1
BZ +

[
DZ
Z

]
(2.43a)

or (discrete-time case)[
N(z)
M(z)

]
=
[
C +DF

F

] (
zI − (A+BF )

)−1
BZ +

[
DZ
Z

]
(2.43b)

Then,
[

N
M

]
∈ RH∞ and

P = NM−1 (2.44)

The following proposition gives the procedure to build a normalised right co-
prime factorisation, i.e., a right coprime factorisation such that N	N+M	M =
I.

Proposition 2.5. Let (A, B, C, D) be a stabilisable realisation of a cont-
inuous-time transfer matrix P (s). Define[

N
M

]
=

⎡
⎣ A+BF BH
C +DF DH

F H

⎤
⎦ (2.45)

where

F = −R−1
(
BTX +DTC

)
(2.46)

H = R−1/2 (2.47)

X is the stabilising solution of the following Riccati equation:(
A−BR−1DTC

)T
X +X

(
A−BR−1DTC

)
+X

(−BR−1BT
)
X + CT R̃−1C = 0 (2.48)

and

R = I +DTD (2.49)

R̃ = I +DDT (2.50)

Then,
[

N(s)
M(s)

]
∈ RH∞,

∀ω N	(jω)N(jω) +M	(jω)M(jω) = I (2.51)

and
P (s) = N(s)M−1(s) (2.52)

� Remark. The same result holds in the discrete-time case with X the stabilising
solution of the following discrete algebraic Riccati equation:

X = AT XA + CT C − (
AT XB + CT D

)(
R + BT XB

)−1(
BT XA + DT C

)
(2.53)
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and F and H respectively given by

F = −(
R + BT XB

)−1(
BT XA + DT C

)
(2.54)

and

H =
(
R + BT XB

)−1/2
(2.55)

�

In the sequel, we shall generally use the notations
[
Ñ M̃

]
(respectively

[
N
M

]
)

for the left (respectively right) coprime factorisations of a system G = M̃−1Ñ =
NM−1 and

[
Ũ Ṽ

]
(respectively

[
U
V

]
) for the left (respectively right) coprime

factorisations of a controller K = Ṽ −1Ũ = UV −1.

2.4.2 The Bezout Identity and Closed-loop Stability

Consider a closed-loop system as in Figure 2.1. Its closed-loop transfer matrix
To(G0, K), given by (2.3), can be expressed in function of any pair of left
coprime factors

[
Ñ M̃

]
of the plant G0 = M̃−1Ñ and of any pair of right

coprime factors
[

U
V

]
of the controller K = UV −1 as

To(G0, K) =
[
K
I

]
(I +G0K)−1

[
G0 I

]
=
[
UV −1

I

]
(I + M̃−1ÑUV −1)−1

[
M̃−1Ñ I

]
=
[
U
V

]
Φ−1

[
Ñ M̃

]
(2.56)

where

Φ =
[
Ñ M̃

] [U
V

]
(2.57)

Lemma 2.1. The closed-loop transfer matrix To(G0, K) of (2.56) is stable if
and only if Φ is a unit (i.e., Φ, Φ−1 ∈ RH∞).

Proof. This follows from the fact that
[
Ñ M̃

]
,
[

U
V

] ∈ RH∞, by definition of
the coprime factors, hence the only remaining necessary and sufficient condition
of closed-loop stability is that Φ be inversely stable.

Lemma 2.2. (Bezout identity) The closed-loop transfer matrix To(G0, K)
of (2.56) is stable if and only if there exist plant and controller coprime factors[
Ñ M̃

]
and

[
U
V

]
such that [

Ñ M̃
] [U
V

]
= I (2.58)

This equation is called a Bezout identity.
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Proof. The sufficient condition is a direct consequence of Lemma 2.1, since
I is a unit. The proof of the necessary condition is constructive: let

[
Ñ M̃

]
and

[
U
V

]
be any pairs of plant and controller coprime factors. By closed-loop

stability hypothesis, Φ =
[
Ñ M̃

] [
U
V

]
is a unit, hence Φ−1 ∈ RH∞. Let us

define
[

U ′

V ′

]
�
[

U
V

]
Φ−1. Then,

[
U ′

V ′

]
∈ RH∞ and U ′V ′−1 = UΦ−1(V Φ−1)−1 =

UV −1 = K, which means that
[

U ′

V ′

]
is a coprime factorisation of K, and it

follows from its definition that
[
Ñ M̃

] [
U ′

V ′

]
= I. Hence,

[
Ñ M̃

]
and

[
U ′

V ′

]
are plant and controller coprime factors satisfying the Bezout identity.

In a similar way, one could define
[
Ñ ′ M̃ ′] � Φ−1

[
Ñ M̃

]
and verify that it

is a pair of plant coprime factors satisfying the Bezout identity with
[

U
V

]
. This

means that, starting from any two pairs of plant and controller coprime factors[
Ñ M̃

]
and

[
U
V

]
and if the closed-loop system is stable, it is always possible to

satisfy the Bezout identity by altering only one pair of coprime factors (either
those of the plants or those of the controller), which leaves all freedom for the
other pair which could be, for instance, normalised. The following proposition
is a direct consequence of this observation.

Proposition 2.6. Consider a stable closed-loop system with transfer matrix
To(G0, K) given by (2.56). Let G0 = M̃−1Ñ and K = UV −1 define, respec-
tively, a left coprime factorisation of the plant and a right coprime factorisation
of the controller. Then, two of the following three equalities can always be sat-
isfied simultaneously:

• normalisation of the left coprime factors of G0:

ÑÑ	 + M̃M̃	 = I (2.59)

• normalisation of the right coprime factors of K:

U	U + V 	V = I (2.60)

• Bezout identity:

Φ = ÑU + M̃V = I (2.61)

All these derivations could also be made for the closed-loop transfer matrix
Ti(G0, K) of (2.2), which can be recast as

Ti(G0, K) =
[
G0

I

]
(I +KG0)−1

[
K I

]
=
[
NM−1

I

]
(I + Ṽ −1ŨNM−1)−1

[
Ṽ −1Ũ I

]
=
[
N
M

]
Φ̃−1

[
Ũ Ṽ

]
(2.62)
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where

Φ̃ =
[
Ũ Ṽ

] [N
M

]
(2.63)

using plant right coprime factors G0 = NM−1 and controller left coprime
factors K = Ṽ −1Ũ . The existence of plant and controller coprime factors
yielding the Bezout identity ŨN + Ṽ M = I is then a necessary and sufficient
condition for closed-loop stability. The following proposition summarises these
results.

Proposition 2.7. (Double Bezout identity) Consider the closed-loop sys-
tem of Figure 2.1. This system is internally stable if and only if there exist plant
and controller left and right coprime factorisations G0 = M̃−1Ñ = NM−1 and
K = Ṽ −1Ũ = UV −1 satisfying the double Bezout identity[

M̃ −Ñ
Ũ Ṽ

] [
V N
−U M

]
= I (2.64)

2.5 The ν-gap Metric

2.5.1 Definition

The ν-gap metric between two continuous-time transfer matrices G1(s) and
G2(s) is a measure of distance between these two systems. It was first intro-
duced by G. Vinnicombe in (Vinnicombe, 1993a, 1993b).

Definition 2.5. (ν-gap metric) The ν-gap metric between two transfer ma-
trices G1 and G2 is defined as

δν(G1, G2) =

⎧⎪⎪⎨
⎪⎪⎩
∥∥κ(G1(jω), G2(jω)

)∥∥
∞ if det Ξ(jω) 
= 0 ∀ω

and wno
(
det Ξ(s)

)
= 0

1 otherwise

(2.65)

where

• Ξ(s) � N	
2 (s)N1(s) +M	

2 (s)M1(s);
• κ(G1(jω), G2(jω)) � −Ñ2(jω)M1(jω)+M̃2(jω)N1(jω) is called the chordal

distance between G1 and G2 at frequency ω;
• G1(s) = N1(s)M−1

1 (s) and G2(s) = N2(s)M−1
2 (s) = M̃−1

2 (s)Ñ2(s) are nor-
malised coprime factorisations of G1 and G2;

• wno(P (s)) = η(P−1(s)) − η(P (s)) is called the winding number of the
transfer function P (s) and is defined as the number of counterclockwise en-
circlements (a clockwise encirclement counts as a negative encirclement)
around the origin of the Nyquist contour of P (s) indented around the right
of any imaginary axis pole of P (s);

• η(P (s)) denotes the number of poles of P (s) in C
+
0 .
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The definition also holds in the discrete-time case by means of the use of the
bilinear transformation s = z−1

z+1 .

It has been shown in (Vinnicombe, 1993a) that

δν(G1, G2) = δν(G2, G1) = δν(GT
1 , G

T
2 ) (2.66)

An alternative definition of the ν-gap is the following:

δν(G1, G2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∥∥κ(G1(jω), G2(jω)
)∥∥

∞
if det

(
I +G	

2(jω)G1(jω)
) 
= 0 ∀ω and

wno
(
det
(
I +G	

2(s)G1(s)
))

+ η
(
G1(s)

)
−η(G2(s)

)− η0
(
G2(s)

)
= 0

1 otherwise

(2.67)

where η0(P (s)) is the number of imaginary axis poles of P (s) and where
κ(G1(jω), G2(jω)) can be written as

κ
(
G1(jω), G2(jω)

)
=
(
I +G2(jω)G	

2(jω)
)−1/2

× (G1(jω) −G2(jω)
)× (I +G	

1(jω)G1(jω)
)−1/2 (2.68)

In the SISO case, the ν-gap metric has a nice geometric interpretation. Indeed,
the chordal distance at frequency ω, κ(G1(jω), G2(jω)), is the distance between
the projections onto the Riemann sphere of the points of the Nyquist plots of
G1 and G2 corresponding to that frequency (hence the appellation ‘chordal
distance’). The Riemann sphere is a unit-diameter sphere tangent at its south
pole to the complex plane at its origin and the points of the Nyquist plots are
projected onto the sphere using its north pole as centre of projection. Due
to this particular projection, the chordal distance has a maximum resolution
at frequencies where |G1| ≈ 1 and/or |G2| ≈ 1, i.e. around the cross-over
frequencies of G1 and G2, since the corresponding points are projected onto
the equator of the Riemann sphere. This property makes the ν-gap a control-
oriented measure of distance between two systems.

� Example 2.4. Consider the systems G1(s) = 1
s+1

and G2(s) = ( 1
s+1

)3. Their

Nyquist diagrams and their projections onto the Riemann sphere are depicted in

Figure 2.3. Consider, for instance, the points G1(jω1) and G1(jω1) with ω1 =

0.938 rad/s. They are respectively located at the coordinates (0.532, −0.499, 0) and

(−0.247, −0.299, 0). Their projections on the Riemann sphere are respectively lo-

cated at the coordinates (0.347, −0.326, 0.347) and (−0.214, −0.260, 0.131). The

distance between these two points, represented by a line segment inside the sphere in

Figure 2.3, is 0.606, which is precisely |κ(G1(jω1), G2(jω1))|. �
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Figure 2.3. Projection onto the Riemann sphere of the Nyquist plots of G1 and G2, and
chordal distance between G1(jω1) and G2(jω1)

2.5.2 Stabilisation of a Set of Systems by a Given Controller and Com-
parison with the Directed Gap Metric

The definition of the ν-gap metric and in particular the winding number con-
dition it involves, is based on a robust stability argument. In the theory of
robust control, coprime-factor uncertainties are often considered. Let G1(s) =
N1(s)M−1

1 (s) define the normalised right coprime factorisation of a nominal
system G1 and let Δ =

[
ΔN

ΔM

]
be a coprime-factor perturbation. If K is a

feedback controller that stabilises G1, then K also stabilises all G2 in the set

Gd
β =

{
G2 = (N1 + ΔN )(M1 + ΔM )−1 | Δ ∈ H∞, ‖Δ‖∞ ≤ β

}
(2.69)

if and only if (Georgiou and Smith, 1990)

bG1,K > β (2.70)

An alternative definition of this set is the following:

Gd
β =

{
G2 | 
δg(G1, G2) < β

}
(2.71)
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where 
δg(G1, G2) is the directed gap defined as


δg(G1, G2) = inf
Q(s)∈H∞

∥∥∥∥
[
N1(s)
M1(s)

]
−
[
N2(s)
M2(s)

]
Q(s)

∥∥∥∥
∞

(2.72)

and where G2(s) = N2(s)M−1
2 (s) defines the normalised right coprime factori-

sation of G2. However, it can be shown (Vinnicombe, 1993b) that the largest
class of systems that can be guaranteed to be stabilised a priori by K consists
of those G2 satisfying

inf
Q(s)∈L∞

∥∥∥∥
[
N1(s)
M1(s)

]
−
[
N2(s)
M2(s)

]
Q(s)

∥∥∥∥
∞
< β, wno

(
det Ξ(s)

)
= 0 (2.73)

(where Ξ(s) is defined in Definition 2.5), which is precisely the set

Gν
β =

{
G2 = (N1 + ΔN )(M1 + ΔM )−1 | Δ ∈ L∞, ‖Δ‖∞ ≤ β

and η(G2) = wno(M1 + ΔM )
}

=
{
G2 | δν(G1, G2) ≤ β

}
(2.74)

Hence, one can define a larger set of plants that are guaranteed to be stabilised
by a given controller K with the ν-gap metric than with directed gap, since the
ν-gap allows coprime-factor perturbations in L∞ rather than in H∞. Another
serious advantage of the ν-gap over the directed gap is the fact that the former
is much easier to compute than the latter. However, in order to be valid, the
robust stability theory with the ν-gap metric requires the verification of the
winding number condition (which can take various forms depending on the
chosen definition of the ν-gap). The demonstration of the necessity of the
winding number condition is very complicated and is outside the scope of this
book. The interested reader is referred to (Vinnicombe, 1993a, 1993b, 2000).

2.5.3 The ν-gap Metric and Robust Stability

The main interest of the ν-gap metric is its use in a range of robust stability
results. One of these results relates the size of the set of robustly stabilising
controllers of a ν-gap uncertainty set (i.e., a set of the form (2.74) defined with
the ν-gap) to the size of this uncertainty set, as summarised in the following
two propositions.

Proposition 2.8. (Vinnicombe, 2000) Let us consider the uncertainty set Gκ
γ ,

centred at a model G1, defined by

Gκ
γ =

{
G2 | κ(G1(ejω), G2(ejω)

) ≤ γ(ω) ∀ω and δν(G1, G2) < 1
}

(2.75)

with 0 ≤ γ(ω) < 1 ∀ω. Then, a controller K stabilising G1 stabilises all plants
in the uncertainty set Gκ

γ if and only if it lies in the controller set

Cκ
γ =

{
K(z) | κ

(
G1(ejω), −1

K(ejω)

)
> γ(ω) ∀ω

}
(2.76)
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The second proposition is a Min-Max version of the first one:

Proposition 2.9. (Vinnicombe, 2000) Let us consider the ν-gap uncertainty
set Gν

β of size β < 1 centred at a model G1:

Gν
β =

{
G2 | δν(G1, G2) ≤ β

}
(2.77)

Then, a controller K stabilising G1 stabilises all plants in the uncertainty set
Gν

β if and only if it lies in the controller set

Cν
β =

{
K(z) | bG1,K > β

}
(2.78)

The size β of a ν-gap uncertainty set Gν
β is thus directly connected to the size

of the set of all controllers that robustly stabilise Gν
β . Moreover, the smaller

this size β, the larger the set of controllers that robustly stabilises Gν
β . This

result will be of the highest importance in Chapter 5.

2.6 Prediction-error Identification

Prediction-error identification is the only modelling tool, considered in this
book, that uses data collected on the process to obtain a mathematical repre-
sentation of it under the form of a transfer function or matrix. Contrary to,
e.g., first-principles modelling, the objective here is not to build a good knowl-
edge model of the process, but to obtain a (generally black-box) representation
model that exhibits a good qualitative and quantitative matching of the pro-
cess behaviour. Such a model is generally delivered with an uncertainty region
around it, which can be used for robust control design.

Our intention here is not to give a thorough theoretical description of the
method. The interested reader is kindly referred to the existing literature on
the subject and more particularly to (Ljung, 1999) for the detailed theory of
prediction-error identification and (Zhu, 2001) for its application to multivari-
able systems in a process control framework.

We make the assumption that the true system is the possibly multi-input multi-
output, linear time-invariant5 system described by

S :

{
y(t) = G0(z)u(t) + v(t)
v(t) = H0(z)e(t)

(2.79)

where G0(z) and H0(z) are rational transfer functions or matrices. G0(z) is
strictly proper and has p outputs and m inputs. H0(z) is a stable and inversely

5This may seem a restrictive hypothesis as, in practice, all industrial systems exhibit at least
a little amount of nonlinearities and have a tendency to alter with the time. Conceptually,
however, the idea of an LTI system is generally perfectly acceptable if the plant is regarded
around a given operating point.
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stable, minimum-phase, proper and monic6 p×p transfer matrix. u(t) ∈ R
m is

the control input signal, y(t) ∈ R
p is the observed output signal and e(t) ∈ R

p

is a white noise process with zero mean and covariance matrix Λ0 (or variance
λ0 in the single-input single-output case).

For the sake of simplicity, however, we shall restrict the derivations of this
section to the SISO case except where explicitely indicated.

2.6.1 Signals Properties

The assumption is made that all signals are quasi-stationary (Ljung, 1999). A
quasi-stationary signal y(t) is a signal for which the following auto-correlation
function exists:

Ry(τ) = lim
N→∞

1
N

N∑
t=1

Ey(t)y(t− τ) � Ēy(t)y(t− τ) (2.80)

where the expectation is taken with respect to the stochastic components of
the signal. e.g., if y(t) is the output of the system (2.79) with u(t) deterministic
and v(t) zero-mean stochastic, then Ey(t) = G0(z)u(t). This quasi-stationarity
assumption is useful to treat deterministic, stochastic or mixed signals in a
common framework with theoretical exactness and it allows defining spectra
and cross-spectra of signals as follows.

The spectrum (or power spectral density) of a quasi-stationary signal y(t) is
defined by

φy(ω) =
∞∑

τ=−∞
Ry(τ)e−jωτ (2.81)

The cross-correlation function and the cross-spectrum of two quasi-stationary
signals are respectively defined by

Ryu(τ) = Ēy(t)u(t− τ) (2.82)

and

φyu(ω) =
∞∑

τ=−∞
Ryu(τ)e−jωτ (2.83)

When (2.79) is satisfied, the following relations hold:

φv(ω) =
∣∣H0(ejω)

∣∣2 φe(ω) =
∣∣H0(ejω)

∣∣2 λ0 (2.84)

φy(ω) = φu
y (ω) + φe

y(ω) �
∣∣G0(ejω)

∣∣2 φu(ω) +
∣∣H0(ejω)

∣∣2 λ0 (2.85)

φyu(ω) = G0(ejω)φu(ω) (2.86)

6A monic filter is a filter whose impulse-response zeroth coefficient is 1 or the unit matrix.
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etc. Spectra are real-valued functions of the frequency ω, while cross-spectra
are complex-valued functions of ω. φu

y (ω) denotes the spectrum of that part of
y(t) that originates from u(t). It is not the same as the cross-spectrum φyu(ω).

In the MIMO case, these expressions become a little more complicated:

φu
y (ω) = G0(ejω)φu(ω)

[
G0(ejω)

]	
(2.87)

etc.

The following equality, called Parseval’s relationship, holds:

E |y(t)|2 =
1
2π

∫ π

−π

φy(ω) dω (2.88)

It says that the power of the signal y(t) is equal to the power contained in its
spectrum. This relationship will have important consequences regarding the
distribution of the modelling error.

In practice, the following formulae can be used to estimate auto-correlation or
cross-correlation functions:

R̂N
y (τ) =

1
N

N∑
t=1

y(t)y(t− τ) (2.89)

R̂N
yu(τ) =

1
N

N∑
t=1

y(t)u(t− τ) (2.90)

and these estimates can be used to calculate spectra and cross-spectra as

φ̂y(ω) =
τm∑

τ=−τm

R̂y(τ)e−jωτ (2.91)

φ̂yu(ω) =
τm∑

τ=−τm

R̂yu(τ)e−jωτ (2.92)

with a suitable τm like, e.g., τm = N/10. It can be shown that, for N → ∞,
these estimates will converge with probability one to the true Ry(τ), Ryu(τ),
φy(ω) and φyu(ω), provided the signals are ergodic7.

2.6.2 The Identification Method

The objective of system identification is to compute a parametrised model
M(θ) for the system:

M(θ) : ŷ(t) = G(z, θ)u(t) +H(z, θ)e(t) (2.93)

7An ergodic stochastic process x(t) is a process whose time average limN→∞ 1
2N

∑N
t=−N x(t)

tends to its ensemble average, i.e., to its expectation Ex(t).
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This model lies in some model set M selected by the designer:

M �
{
M(θ) | θ ∈ Dθ ⊆ R

n
}

(2.94)

i.e., M is the set of all models with the same structure as M(θ). The param-
eter vector θ ranges over a set Dθ ⊆ R

n that is assumed to be compact and
connected. We say that the true system is in the model set, which is denoted
by S ∈ M, if

∃θ0 ∈ Dθ : G(z, θ0) = G0, H(z, θ0) = H0 (2.95)

Otherwise, we say that there is undermodelling of the system dynamics. The
case where the noise properties cannot be correctly described within the model
set but where

∃θ0 ∈ Dθ : G(z, θ0) = G0 (2.96)

will be denoted by G0 ∈ G.

The prediction-error identification procedure uses a finite set of N input-output
data

ZN =
{
u(1), y(1), . . . , u(N), y(N)

}
(2.97)

to compute the one-step-ahead prediction of the output signal at each time
sample t ∈ [1, N ], using the available past data samples8 and the model with
its parameter vector θ:

ŷ(t | t− 1, θ) = H−1(z, θ)G(z, θ)u(t) +
(
1 −H−1(z, θ)

)
y(t) (2.98)

(Observe that, because G(z, θ) is strictly proper and H(z, θ) is monic, the two
terms of the right-hand side depend only on past u’s and y’s.) The prediction
error at time t is

ε(t, θ) = y(t) − ŷ(t | t− 1, θ) = H−1(z, θ)
(
y(t) −G(z, θ)u(t)

)
(2.99)

Observe that it would be equal to the white noise e(t), i.e., to the only abso-
lutely unpredictable part of y(t), if G(z, θ) and H(z, θ) were equal to G0(z)
and H0(z), respectively. The objective of prediction-error identification is to
find a parameter vector θ̂ such that ε(t, θ̂) be whitened, meaning that all the
useful information contained in the data ZN (i.e., everything but the stochastic
white noise e(t)) has been exploited.

Given the chosen model structure (2.93) and measured data (2.97), the pre-
diction-error estimate of θ is determined through

θ̂ = arg min
θ∈Dθ

VN

(
θ, ZN

)
(2.100)

8The difference between simulation and prediction is that the former only uses the measured
input signal and filters it through the transfer function G(z, θ) of the model to compute an
estimate of the output signal, while the latter uses all available information, including past
output samples, to build an estimation, or prediction, of the future outputs.
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where VN (θ, ZN ) is a quadratic criterion:

VN

(
θ, ZN

)
=

⎧⎨
⎩

1
N

∑N
t=1 ε

T
F (t, θ)Λ−1εF (t, θ) (MIMO case)

1
N

∑N
t=1 ε

2
F (t, θ) (SISO case)

(2.101)

In this expression, Λ is a symmetric positive-definite weighting matrix and
εF (t, θ) are the possibly filtered prediction errors:

εF (t, θ) = L(z, θ)ε(t, θ) (2.102)

where L(z, θ) is any linear, stable, monic and possibly parametrised prefilter.
Since

εF (t, θ) = L(z, θ)H−1(z, θ)
(
y(t) −G(z, θ)u(t)

)
(2.103)

this filter can be included in the noise model structure and, without loss of
generality, we shall make the assumption that L(z, θ) = I in the sequel. (Ob-
serve, apropos, that if L(z, θ) = H(z, θ), then εF (t, θ) = y(t) − G(z, θ)u(t),
which is the simulation error at time t. The noise model disappears then from
the identification criterion, meaning that no noise model is identified. This is
the output-error case: see below.)

The following notation will often be used for the estimates G(z, θ̂), H(z, θ̂),
etc.:

Ĝ(z) = G(z, θ̂) and Ĥ(z) = H(z, θ̂) (2.104)

2.6.3 Usual Model Structures

Some commonly used polynomial model structures are the following.

• FIR (Finite Impulse Response model structure):

y(t) = B(z)z−ku(t) + e(t) (2.105)

• ARX (Auto-Regressive model structure with eXogenous inputs):

A(z)y(t) = B(z)z−ku(t) + e(t) (2.106)

• ARMAX (Auto-Regressive Moving-Average model structure with eXoge-
nous inputs):

A(z)y(t) = B(z)z−ku(t) + C(z)e(t) (2.107)

• OE (Output-Error model structure):

y(t) = F−1(z)B(z)z−ku(t) + e(t) (2.108)

• BJ (Box-Jenkins model structure):

y(t) = F−1(z)B(z)z−ku(t) +D−1(z)C(z)e(t) (2.109)
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In these expressions, k is the length of the dead time of the transfer function
(expressed in number of samples), B(z) is a polynomial (SISO case) or a poly-
nomial matrix (MIMO case) of order nb in z−1, and A(z), C(z), D(z) and F (z)
are monic polynomials9 or polynomial matrices in z−1, respectively of orders
na, nc, nd and nf .

� Remark. Prediction-error identification only works with stable predictors, i.e.,

the product H−1(z, θ)G(z, θ) in (2.98) is constrained to be stable (otherwise the

prediction errors might not be bounded). This means that the only way to identify

an unstable system is to use a model structure where the unstable poles of G(z, θ)

are also in H(z, θ), e.g., an ARX or ARMAX structure, allowing the predictor to

be stable although the model is unstable. On the contrary, the use of an OE model

structure will enforce stability of the estimate. �

2.6.4 Computation of the Estimate

Depending on the chosen model structure, θ̂ can be obtained algebraically or
via an optimisation procedure.

A. The FIR and ARX cases. With a FIR or ARX model structure, the
model is linear in the parameters:

M(θ) : ŷ(t) = ϕT (t)θ + e(t) (2.110)

hence

ŷ(t | t− 1, θ) = ϕT (t)θ (2.111)

where

θ =
[
a1 . . . ana

b0 . . . bnb

]T (2.112)

and

ϕ(t) =[−y(t− 1) . . . −y(t− na) u(t− nk) . . . u(t− nb − nk)
]T (2.113)

are respectively a parameter vector and a regression vector. The minimising
argument of VN (θ, ZN ) is then obtained by the standard least-squares method:

θ̂ =

[
1
N

N∑
t=1

ϕ(t)ϕT (t)

]−1

1
N

N∑
t=1

ϕ(t)y(t) (2.114)

9A polynomial is monic if its independent term is 1.



30 2 Preliminary Material

B. Other cases. Other model structures require numerical optimisation to
find the estimate. A standard search routine is the following:

θ̂i+1 = θ̂i − μi
[
Ri

N

]−1
V ′

N

(
θ̂i, ZN

)
(2.115)

where θ̂i is the estimate at iteration i,

V ′
N

(
θ̂i, ZN

)
= − 1

N

N∑
t=1

ψ
(
t, θ̂i

)
ε
(
t, θ̂i

)
(2.116)

is the gradient of VN (θ, ZN ) with respect to θ evaluated at θ̂i, Ri
N is a matrix

that determines the search direction, μi is a factor that determines the step
size and

ψ(t, θ) = − d

dθ
ε(t, θ) =

d

dθ
ŷ(t | t− 1, θ) (2.117)

is the negative gradient of the prediction error. A common choice for the matrix
Ri

N is

Ri
N =

1
N

N∑
t=1

ψ
(
t, θ̂i

)
ψT
(
t, θ̂i

)
+ δiI (2.118)

which gives the Gauss-Newton direction if δi = 0; see, e.g., (Dennis and Schn-
abel, 1983). δi is a regularisation parameter chosen so that Ri

N > 0.

2.6.5 Asymptotic Properties of the Estimate

The results of this subsection are given for both MIMO and SISO cases.

A. Asymptotic bias and consistency. Under mild conditions, in the
MIMO case, there hold (Ljung, 1978)

VN

(
θ, ZN

)→ V̄ (θ) = ĒεT (t, θ)Λ−1ε(t, θ) w.p. 1 as N → ∞ (2.119)

and

θ̂ → θ∗ = arg min
θ∈Dθ

V̄ (θ) w.p. 1 as N → ∞ (2.120)

Note that we can write V̄ (θ) as

V̄ (θ) = Ē trace
(
Λ−1ε(t, θ)εT (t, θ)

)
=

1
2π

∫ π

−π

trace
(
Λ−1φε(ω)

)
dω (2.121)
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where φε(ω) is the power spectral density of the prediction error ε(t, θ). The
second equality comes from Parseval’s relationship. As a result, there holds10

θ∗ = arg min
θ∈Dθ

1
2π

∫ π

−π

trace
([
G0 −G(θ) H0 −H(θ)

] [ φu φue

φeu Λ0

]

×
[(
G0 −G(θ)

)	(
H0 −H(θ)

)	] (H(θ)ΛH	(θ)
)−1
)
dω (2.122)

which can be recast as

θ∗ = arg min
θ∈Dθ

1
2π

∫ π

−π

trace
([(

G0 −G(θ) +B(θ)
)
φu

(
G0 −G(θ) +B(θ)

)	
+
(
H0 −H(θ)

)(
Λ0 − φeuφ

−1
u φue

)(
H0 −H(θ)

)	]
× (H(θ)ΛH	(θ)

)−1
)
dω (2.123)

where

B(ejω, θ) =
(
H0(ejω) −H(ejω, θ)

)
φeu(ω)φ−1

u (ω) (2.124)

is a bias term that will vanish only if φeu = 0, i.e., if the data are collected
in open loop so that u and e are uncorrelated, or if the noise model H(z, θ) is
flexible enough so that S ∈ M; see (Forssell, 1999).

In the SISO case, these expressions become

V̄ (θ) =
1
2π

∫ π

−π

φε(ω)dω (2.125)

and

θ∗ = arg min
θ∈Dθ

{
1
2π

∫ π

−π

∣∣G0 −G(θ) +B(θ)
∣∣2∣∣H(θ)

∣∣2 φudω

+
1
2π

∫ π

−π

∣∣H0 −H(θ)
∣∣2∣∣H(θ)

∣∣2 λ0φ
r
u

φu
dω

}
(2.126)

where the second term has been obtained by noting that λ0 − |φue|2
φu

= λ0φr
u

φu
.

Hence, under the condition that S ∈ M, we find that

G(θ̂) → G0 and H(θ̂) → H0 w.p. 1 as N → ∞ (2.127)

10The ejω or ω arguments of the transfer functions or spectra will often be omitted to simplify
the notation.
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B. Asymptotic variance in transfer function space. In the MIMO case,
the asymptotic covariance of the estimate, as N and n both tend to infinity, is
given by

cov col
([
Ĝ(ejω) Ĥ(ejω)

]) ≈ n

N

[
φu(ω) φue(ω)
φeu(ω) Λ0

]−T

⊗ φv(ω) (2.128)

where ⊗ denotes the Kronecker product. In open loop, φue = 0 and

cov col
(
Ĝ(ejω)

) ≈ n

N
φ−T

u (ω) ⊗ φv(ω) (2.129a)

cov col
(
Ĥ(ejω)

) ≈ n

N
Λ−1

0 ⊗ φv(ω) (2.129b)

In the SISO case, these expressions become

cov
(
Ĝ(ejω)

) ≈ n

N

φv(ω)
φu(ω)

(2.130a)

cov
(
Ĥ(ejω)

) ≈ n

N

∣∣H0(ejω)
∣∣2 (2.130b)

in open loop while, in closed loop, the covariance of Ĝ(ejω) is

cov
(
Ĝ(ejω)

) ≈ n

N

φv(ω)
φr

u(ω)
(2.131)

where φr
u is the power spectral density of that part of the input u(t) that

originates from the reference r(t). This shows the necessity to have a nonzero
exogenous excitation at r(t) to be able to identify the system. An input signal
u(t) that would only be generated by feedback of the disturbances through the
controller would be useless, as it would yield an estimate with infinite variance.

These results were established in (Ljung, 1985) for the SISO case and in (Zhu,
1989) for the MIMO case. They show the importance of the experiment design
(open-loop or closed-loop operation, spectrum of the excitation signal, etc.) in
the tuning of the modelling error. This question will receive more attention in
Chapter 3.

� Remark. These asymptotic variance expressions are widely used in practice,

although they are not always reliable. It has been shown in (Ninness et al., 1999)

that their accuracy could depend on choices of fixed poles or zeroes in the model

structure; alternative variance expressions with greatly improved accuracy and which

make explicit the influence of any fixed poles or zeroes are given. Observe for instance

that the use of a fixed prefilter L(z) during identification amounts to impose fixed

poles and/or zeroes in the noise model. In this case, the extended theory of (Ninness

et al., 1999) should be used, the more so if the number of fixed poles and zeroes is

large with respect to the model order. �
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C. Asymptotic variance in parameter space. The parameter vector esti-
mate tends to a random vector with normal distribution as the number of data
samples N tends to infinity (Ljung, 1999):

θ̂ → θ∗ w.p. 1 as N → ∞ (2.132a)
√
N(θ̂ − θ∗) ∈ AsN(0, Pθ) (2.132b)

where

Pθ = R−1QR−1 (2.132c)

R = V̄ ′′(θ∗) > 0 (2.132d)

Q = lim
N→∞

N · E
([
V ′

N

(
θ∗, ZN

)][
V ′

N

(
θ∗, ZN

)]T) (2.132e)

The prediction-error identification algorithms of the Matlab
� Identification

Toolbox, used with standard model structures, deliver an estimate P̂θ of Pθ.

2.6.6 Classical Model Validation Tools

Once a model M(θ̂) has been identified, it is necessary to make it pass a range
of validation tests to assess its quality. The classical validation tests are the
following.

A. Model fit indicator. The simulated output and the one-step-ahead pre-
dicted output are respectively given by

ŷs

(
t | M(θ̂)

)
= G(z, θ̂)u(t) (2.133a)

and

ŷp

(
t | M(θ̂)

)
= H−1(z, θ̂)G(z, θ̂)u(t) +

(
1 −H−1(z, θ̂)

)
y(t) (2.133b)

Let us define the following model fit indicator:

Jx

(M(θ̂)
)

=
1
N

N∑
t=1

∣∣∣y(t) − ŷx

(
t | M(θ̂)

)∣∣∣2 (2.134)

where x is either p or s depending on whether we are interested in one-step-
ahead prediction or in simulation (several-steps-ahead prediction can also be
considered: see (Ljung, 1999)). A normalised measure of this fit is given by

R2
x

(M(θ̂)
)

= 1 − Jx

(M(θ̂)
)

1
N

∑N
t=1 |y(t)|2

(2.135)

A value of Rx close to 1 means that the predicted or simulated output fits the
process output well, i.e., that the observed output variations are well explained
by the model, while a value close to 0 means that the model is unable to
correctly explain the data.



34 2 Preliminary Material

The quality of the indicator Jx depends very much on the data set that is used
to compute it. As a result, it would be nice to be able to evaluate J̄x = EJx,
where the expectation is taken with respect to the data, the model M(θ̂) being
fixed. It can be shown that Jx will be an unbiased estimate of J̄x only if it is
computed from a different data set that the one used during the identification
of the model. Therefore, it is always recommended to use two different data
sets: one for estimation, the other for validation. See (Ljung, 1999) for more
details.

Finally, note that a model with a good fit in prediction can have a bad fit in
simulation. It is easier to find a good model for prediction than for simula-
tion, because prediction takes the noise into account while simulation does not,
meaning that the best model obtained by prediction-error identification will
always produce a simulation error at least equal to v(t) = H0(z)e(t), which is
usually an auto-correlated signal, while it will produce a prediction error close
to e(t) and approximately white provided an appropriate model structure is
used. When H(z, θ) ≡ 1, i.e., in the output-error case, the simulation error
and prediction error are of course the same. This means that the choice of an
OE model structure is ideal when the objective is to find a good simulation
model, although the resulting model can be far from optimal in prediction if
H0(z) 
= 1.

B. Residuals analysis. Since the objective of prediction-error identification
is to make the prediction errors white, it is natural to test this whiteness in
order to assess the quality of the model.

Let us define the residuals as

ε(t) = ε
(
t | M(θ̂)

)
� y(t) − ŷp

(
t | M(θ̂)

)
(2.136)

The residuals are the prediction errors, ideally built from a validation data
set different from the one used during identification as explained above. The
experimental auto-correlation function of the residuals is given by

R̂N
ε (τ) =

1
N

N∑
t=1

ε(t)ε(t− τ) (2.137)

If ε(t) is a real white noise sequence of variance λ, R̂N
ε (τ) will tend to 0 for

τ 
= 0 and to λ2 for τ = 0, as N tends to infinity. As a result, a good way
to test the whiteness of ε(t) is to check whether R̂N

ε (τ) is close enough to 0
for τ 
= 0. The Matlab

� Identification Toolbox offers the possibility to plot
R̂N

ε (τ) in function of τ , as well as the threshold beyond which it cannot be
considered as ‘sufficiently close’ to zero, and which depends on a probability
(confidence) level chosen by the user. More technically, the residuals will be
considered as white with probability p if

N(
R̂N

ε (0)
)2 M∑

τ=1

(
R̂N

ε (τ)
)2
< χ2

p(M) (2.138)
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where M is the number of time lags for which R̂N
ε (τ) is computed, N is the

number of data samples used for the computation and χ2
p(M) is the p level of

the chi-square distribution with M degrees of freedom. Indeed,

ε(t) ∈ N(0, λ) =⇒
√
NR̂N

ε (τ) ∈ AsN(0, λ2)

=⇒ N

λ2

M∑
τ=1

(
R̂N

ε (τ)
)2 ∈ Asχ2(M) (2.139)

See (Ljung, 1999) for details.

If the model fails to pass this test, it means that there is more information
in the data than explained by the model, i.e., that a higher-order or more
flexible model structure should be used. This test will systematically fail if an
output-error model structure is used while the real system output is subject to
significantly nonwhite disturbances.

The cross-correlation between residuals and past inputs tells us if the residuals
ε(t) still contain information coming from the input signal u(t). It is defined
as

R̂N
εu(τ) =

1
N

N∑
t=1

ε(t)u(t− τ) (2.140)

If it is significantly different of 0 for some time lag τ , then there is information
coming from u(t−τ) that is present in y(t) but not in ŷp(t | M(θ̂)). This means
that G(z, θ̂) is not representing the transfer from u(t−τ) to y(t) correctly. This
will typically be the case if the system delay or order is incorrectly estimated
and it means that something has to be done with the structure of G(z, θ).
Incidentally, note that there will never be any correlation between ε(t) and
future inputs u(t + τ), because of the causality of the system G0(z), except
if the data are collected in closed loop, because u(t) then depends on past
outputs, hence on past disturbances v(t) (and hence, e(t)). More technically,
it can be shown (Ljung, 1999) that

√
NR̂N

εu(τ) ∈ AsN(0, P ), P =
∞∑

k=−∞
Rε(k)Ru(k) (2.141)

and the uncorrelation test with probability p amounts to check if∣∣∣R̂N
εu(τ)

∣∣∣ ≤√P

N
Np (2.142)

where Np denotes the p level of the N(0, 1) distribution. Rε(k) and Ru(k)
are the unknown true auto-correlation functions of ε(t) and u(t), and they can
only be approximated from a finite number of data. Once again, the Matlab

�

Identification Toolbox offers the possibility to plot R̂N
εu(τ) in function of τ , as

well as the threshold beyond which it cannot be considered as ‘sufficiently close’
to zero and which depends on the confidence level p chosen by the user.
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C. Pole-zero cancellations. While the residuals analysis tells us whether
the model structure and order are respectively flexible and high enough to
capture all the system dynamics, it does not detect a too high model order.
In particular, it is important to avoid (near) pole-zero cancellations, as they
do generally not represent the reality, are a cause of increased model variance
by virtue of the n factor in (2.128) and lead to a (nearly) nonminimal model
that may pose control design issues. Pole-zero cancellations can be detected
by plotting the poles and zeroes of the model in the complex plane. Any such
cancellation means that both the numerator and denominator orders of the
model can be reduced by 1.

2.6.7 Closed-loop Identification

When the system G0 operates in closed loop with some stabilising controller
K as in Figure 2.1, it is possible to use closed-loop data for the identification
of a model Ĝ. This can be done using different approaches, among which the
following three will be used in this book.

A. The indirect approach. This approach, proposed by (Söderström and
Stoica, 1989), uses measurements of either r1(t) or r2(t) and either y(t) or u(t)
to identify one of the four entries of the matrix T (G0, K) of (2.8). From this
estimate, a model Ĝ for G0 is derived, using knowledge of the controller, which
has to be LTI. Such knowledge is required for this method.

B. The coprime-factor approach. This approach, proposed by (Van den
Hof and Schrama, 1995), uses measurements of r1(t) or r2(t) and of y(t) and
u(t) to identify the two entries of a column of T (G0, K). A model Ĝ for G0

is then given by the ratio of these two entries. This method requires that the
controller be LTI, but it can be unknown.

C. The direct approach. This approach consists in identifying a model Ĝ
for G0 directly from measurements of u(t) and y(t) collected in closed loop.

This is, of course, only a rough description of these approaches. Variants ex-
ist (e.g., indirect identification with a tailor-made parametrisation), as well as
other methods (e.g., the dual Youla parametrisation method (Hansen, 1989; De
Bruyne et al., 1998), which will be used and described in Chapter 4). It has
recently been shown that the qualitative properties of the different closed-loop
identification methods are essentially equivalent, by observing that these meth-
ods can be seen as different parametrisations of one and the same prediction-
error method (Forssell and Ljung, 1999).
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2.6.8 Data Preprocessing

We cannot conclude this section on system identification without a word on
data preprocessing, as it is a crucial phase upon which the whole identification
procedure will rest.

As we have said in the beginning of this section, prediction-error identification
is based on the assumption that the true system is LTI, which is generally
acceptable if variations around a given operating point are considered. It is
therefore important to remove the value of this operating point from the input
and output signals that are used for identification, in such a way that only small
variations around the setpoint are considered. Depending on the process, this
operating point will be the initial value of the signals (e.g., if the data used for
identification are those of a step response), or its mean, or a slow trend. The
removal of the continuous component can be done either algebraically, or by
high-pass data filtering. The latter can also be used for data detrending.

The sampling frequency of the data must be chosen carefully and an anti-
aliasing filter must be used during the acquisition procedure and during any
possible subsequent step of downsampling. If the sampling period is too small
with respect to the system time constant, the poles and zeroes of the identified
model will drift towards the point 1 + 0j of the unit circle in the complex
plane, i.e., the obtained model will be close to instability and numerically ill
conditioned.

� Example 2.5. To illustrate this, consider for instance the first-order continuous-

time system G(s) = 1
s+1

. Its time constant is 1 second. If it is sampled with a very

small sampling period ts, the derivative can be approximated by a finite difference,

i.e., by setting s ≈ 1−z−1

ts
. Hence, G(s) can be approximated by the discrete-time

transfer function G(z) = ts
(1+ts)−z−1 , whose pole tends to z = 1 as ts tends to 0. �

On the contrary, if the sampling period is too large, useful signal information
will be lost. There are several rules for choosing the appropriate sampling
period. (Zhu, 2001) proposes the following:

• to choose ts ≈ Tmin

3 , where Tmin is the smallest time constant of interest;
• to choose fs = 10fo, where fs is the sampling frequency and fo is the cut-off

frequency of the process;
• to choose ts in the range Tset

100 ≤ ts ≤ Tset

20 , where Tset is the settling time of
the process.

Other important operations in data preprocessing are peak shaving, removal
of outliers, selection of a data set not affected by unmeasured disturbances or
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changes in the operating conditions, and division of the data into two subsets,
respectively for parameter estimation and for validation.

2.7 Balanced Truncation

Here, we make the assumption that a strictly stable, high-order, continuous-
time model Gn(s) of the system is available (see Subsection 2.7.6 for some
remarks on the discrete-time case), and that it has the following state-space
representation:

Gn =
[
A B
C D

]
(2.143a)

i.e.,

Gn(s) = C(sI −A)−1B +D (2.143b)

The balanced truncation procedure, which was first proposed in (Moore, 1981),
consists in computing a state-space representation of Gn(s) in which the most
controllable modes coincide with the most observable ones. The least observ-
able and controllable modes, which have little influence on the input-output
behaviour of the model, are then discarded. This procedure can be extended
to the case where frequency weightings are used (Enns, 1984a, 1984b). We
shall first briefly review the notions of controllability and observability and
then describe the balanced truncation procedure without and with frequency
weightings.

2.7.1 The Concepts of Controllability and Observability

A. Controllability.

Definition 2.6. (Controllability) A state x0 ∈ R
n of the system Gn is

called controllable if there exists a control input signal u(t), t ∈ [0, T ], that
brings the system from initial state x(0) = x0 to x(T ) = 0 in a finite time
T . The controllable subspace of Gn, Xcont ⊆ R

n, is the set of all controllable
states of Gn. Gn is called controllable if Xcont = R

n.

The controllability matrix of Gn is

C �
[
B AB . . . An−1B

]
(2.144)

The columns of C generate Xcont. As a result, Gn (or, equivalently, the pair
(A, B)) is controllable if and only if rankC = n. The controllability of Gn

implies that it is always possible to find a finite input signal u(t) that brings
the state from any initial condition x(0) = x1 to any desired value x(T ) = x2

in a finite time T > 0.
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The controllability Gramian of Gn at time 0 ≤ t <∞ is defined as

P(t) �
∫ t

0

eAτBBT eAT τdτ, t ∈ R
+ (2.145)

It has the following properties:

• ∀t ∈ R
+ P(t) = PT (t) ≥ 0, i.e., it is symmetric and positive semi-definite;

• ∀t ∈ R
+ imP(t) = imC, i.e., the columns of P(t) generate Xcont for all

positive t.

For a strictly stable system, the infinite controllability Gramian is defined as

P �
∫ ∞

0

eAτBBT eAT τdτ (2.146)

It has the same properties as P(t). As a result, a stable system Gn is fully
controllable if and only if P > 0, i.e., if it is positive definite. This infinite
controllability Gramian, which we shall simply call the controllability Gramian
in the sequel, can be computed by solving the following Lyapunov equation:

AP + PAT +BBT = 0 (2.147)

The controllability Gramian P gives the minimum input energy that would be
necessary to bring the system from the free equilibrium x(−∞) = 0 to a state
x(0) = x0:

min
u

{∫ 0

−∞
uT (t)u(t)dt | x(0) = x0

}
= xT

0 P−1x0 when x(−∞) = 0 (2.148)

B. Observability.

Definition 2.7. (Observability) A state x0 ∈ R
n of the system Gn is called

unobservable if the free response of the output of Gn to this state is identically
zero for all t ≥ 0, i.e., if this state cannot be distinguished from the zero state.
The unobservable subspace of Gn, �RnXobs ⊆ R

n, is the set of all unobservable
states of Gn. Gn is called observable if �RnXobs = {0} or, equivalently, if
Xobs = R

n
0 .

The observability matrix of Gn is

O �

⎡
⎢⎢⎢⎣

C
CA
...

CAn−1

⎤
⎥⎥⎥⎦ (2.149)

The null space of O is �RnXobs, hence Gn (or, equivalently, the pair (A, C))
is observable if and only if rankO = n. Gn is observable means that equal
outputs for equal inputs imply equal initial state conditions.
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The observability Gramian of Gn at time 0 ≤ t <∞ is defined as

Q(t) �
∫ t

0

eAT (t−τ)CTCeA(t−τ)dτ, t ∈ R
+ (2.150)

It has the following properties:

• ∀t ∈ R
+ Q(t) = QT (t) ≥ 0, i.e., it is symmetric and positive semi-definite;

• ∀t ∈ R
+ kerQ(t) = kerO, i.e., the null space of Q(t) is �RnXobs for all

positive t.

For a strictly stable system, the infinite observability Gramian is defined as

Q �
∫ ∞

0

eAT τCTCeAτdτ (2.151)

It has the same properties as Q(t). As a result, Gn is fully observable if and
only if Q > 0, i.e., if it is positive definite. This infinite observability Gramian,
which we shall simply call the observability Gramian in the sequel, can be
computed by solving the following Lyapunov equation:

AT Q + QA+ CTC = 0 (2.152)

The observability Gramian Q gives the total energy of the free output response
of the system to an initial state x(0) = x0:∫ ∞

0

yT (t)y(t)dt = xT
0 Qx0 when u(t) = 0 ∀t ≥ 0 and x(0) = x0 (2.153)

2.7.2 Balanced Realisation of a System

The following observations can be made regarding the controllability and ob-
servability Gramians:

• the controllability and observability Gramians P and Q depend on the state-
space realisation of the system Gn;

• their eigenvalues give information about the ‘level’ of observability or con-
trollability of the state variables;

• depending on the chosen realisation (2.143), some state variables (i.e., some
dynamics) can be very observable but little controllable, or vice-versa.

If the realisation (2.143) is minimal, i.e., if it is both controllable and observable
(P > 0 and Q > 0), it is possible to find a state transformation that brings
the system to a form where the most observable dynamics are also the most
controllable ones. This is called a balanced realisation. When the system is in
balanced form, its Gramians are diagonal and equal:

P = Q = Σ � diag(ς1, . . . , ςn) (2.154)
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where the ςi’s are the Hankel singular values of Gn in decreasing order:

ςi =
√
λi(PQ) > 0, ςi ≥ ςi+1 (2.155)

Observe that, although the Gramians depend on the state realisation of the
system, the Hankel singular values are independent of this realisation. Once a
balanced realisation has been obtained, it is possible to reduce the order of the
system by simply discarding the state variables that correspond to the least
observable and controllable dynamics. Indeed, these are the dynamics that
contribute the least to the global input-output behaviour of the system.

Starting from any realisation (2.143) of Gn, one can compute a balanced real-
isation as follows.

1. Compute the controllability and observability Gramians P and Q by solving
the Lyapunov equations (2.147) and (2.152).

2. Compute

Σ = diag(ς1, . . . , ςn) (2.156)

where the ςi’s are given by (2.155).
3. Compute R such that

P = RTR (2.157)

It can be obtained as

R = Υ
√

ΛΥT (2.158)

where Λ is a diagonal matrix containing the eigenvalues of P and Υ is a
matrix whose columns are the eigenvectors of P associated with the entries
of Λ.

4. Make a singular-value decomposition of RQRT :

RQRT = UΣ2UT (2.159)

5. Then

T = Σ1/2UTR−T (2.160)

is the balancing transformation matrix and there holds

TPTT = T−T QT−1 = Σ (2.161)

6. Compute

Ă = TAT−1 B̆ = TB C̆ = CT−1 D̆ = D (2.162)

Then,

Ğn =

[
Ă B̆

C̆ D̆

]
(2.163)

is a balanced realisation of Gn(s).
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2.7.3 Balanced Truncation

The diagonal of Σ contains the Hankel singular values ofGn in decreasing order.
The state variables of the balanced realisation Ğn follow the same order: xi is
more observable and controllable than xj for 1 ≤ i < j ≤ n. More precisely, Ğn

is more observable and controllable in the direction of 
ei than in the direction
of 
ej for 1 ≤ i < j ≤ n. Let us then consider the following partition:

Σ =
[
Σ11 0
0 Σ22

]
(2.164a)

Σ11 = diag(ς1, . . . , ςr) (2.164b)

Σ22 = diag(ςr+1, . . . , ςn) (2.164c)

The corresponding partition of Ğn is

Ğn =

⎡
⎢⎣ Ă11 Ă12 B̆1

Ă21 Ă22 B̆2

C̆1 C̆2 D̆

⎤
⎥⎦ (2.165)

Let us define

Ĝr =

[
Ă11 B̆1

C̆1 D̆

]

� bt (Gn, r) (2.166)

which is obtained by truncating the least observable and controllable dynamics
of Ğn. The obtained reduced-order system Ĝr is a stable suboptimal solution
to the following minimisation problem:

min
Gr(s) of order r

‖Gn(s) −Gr(s)‖∞ (2.167)

which is hard to solve exactly. Upper and lower bounds of the reduction error
in the H∞ norm can easily be computed from the Hankel singular values of Gn

(Glover, 1984), (Enns, 1984a, 1984b):

ςr ≤
∥∥∥Gn(s) − Ĝr(s)

∥∥∥
∞

≤ 2
n∑

i=r+1

ςi (2.168)

The level r of truncation can be chosen by plotting the ςi’s: it is best to have
ςr >> ςr+1, which means that the dynamics corresponding to ςr+1, . . . , ςn can
really be neglected because of their relatively poor degree of observability and
controllability. A tighter upper bound in (2.168) can be obtained by counting
the ςi’s of multiplicity larger than 1 only once in the summation.

2.7.4 Numerical Issues

The balancing transformation of Subsection 2.7.2 is a frequent source of numer-
ical difficulty, as is often the case with nonorthogonal transformations. There
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exist, however, algorithms that compute the reduced-order system Ĝr(s) start-
ing from any realisation of the full-order system Gn(s) without performing
explicitly this balancing transformation. The following algorithm, for instance,
has been proposed by (Safonov and Chiang, 1989).

1. Starting from the Gramians P and Q of any state-space realisation of Gn(s),
compute ordered Schur decompositions of the product PQ:

V T
A PQVA = SA V T

D PQVD = SD (2.169)

where SA and SD are upper triangular matrices with the eigenvalues of PQ
on their diagonals, respectively in ascending and descending order and VA

and VD are orthogonal.
2. Compute the following submatrices, where r is the order of the desired

reduced-order system Ĝr(s):

Va = VA

[
0(n−r)×r

Ir×r

]
Vd = VD

[
Ir×r

0(n−r)×r

]
(2.170)

3. Compute a singular-value decomposition of V T
a Vd:

ULSU
T
R = V T

a Vd (2.171)

where S is diagonal with positive entries and UL and UR are orthogonal.
4. Transformation matrices are obtained as

L = S−1
2UT

L V
T
a R = VdURS

−1
2 (2.172)

(LR = I, meaning that the transformation is orthogonal) and a state-space
realisation of Gr(s) is given by

Ar = LAR Br = LB Cr = CR Dr = D (2.173)

2.7.5 Frequency-weighted Balanced Truncation

A very common case is when the reduction criterion contains stable input
and/or output frequency-weighting filters Wr and/or Wl. The minimisation
problem becomes

min
Gr(s) of order r

∥∥Wl(s)
(
Gn(s) −Gr(s)

)
Wr(s)

∥∥
∞ (2.174)

to which a suboptimal solution can be computed by frequency-weighted bal-
anced truncation.

Let us consider any minimal realisation of the stable system Gn(s) defined in
(2.143) and realisations of the two filters as follows:

Wl =
[
Al Bl

Cl Dl

]
Wr =

[
Ar Br

Cr Dr

]
(2.175)



44 2 Preliminary Material

Then, a realisation of Wl(s)Gn(s)Wr(s) � G̃n(s) = C̃(sI− Ã)−1B̃+ D̃ is given
by

G̃n =
[
Ã B̃

C̃ D̃

]
=

⎡
⎢⎢⎣
Al BlC BlDCr BlDDr

0 A BCr BDr

0 0 Ar Br

Cl DlC DlDCr DlDDr

⎤
⎥⎥⎦ (2.176)

The controllability and observability Gramians of this input-output
frequency-weighted system are respectively the solutions of the following Lya-
punov equations:

ÃP̃ + P̃ÃT + B̃B̃T = 0 (2.177)

ÃT Q̃ + Q̃Ã+ C̃T C̃ = 0 (2.178)

These Gramians can be partitioned similarly to Ã in (2.176):

P̃ =

⎡
⎣P11 P12 P13

P21 P22 P23

P31 P32 P33

⎤
⎦ Q̃ =

⎡
⎣Q11 Q12 P13

Q21 Q22 P23

Q31 Q32 P33

⎤
⎦ (2.179)

P22 and Q22, which correspond to the A block in (2.176), are then the fre-
quency-weighted controllability and observability Gramians of Gn(s). If
Wr(s) 
= I, then P22 
= P given by (2.147), which means that the input
weighting filter modifies the controllability Gramian of the system. Similarly,
if Wl(s) 
= I, then Q22 
= Q given by (2.152), which means that the output
weighting filter modifies the observability Gramian of the system.

The rest of the procedure consists of finding a transformation matrix T such
that TP22T

T = T−T Q22T
−1 = Σ = diag(ς1, . . . , ςn) where the ςi’s are the

frequency-weighted Hankel singular values of Gn(s) and to apply this transfor-
mation to the realisation (2.143). This produces a frequency-weighted balanced
realisation Ğn of the system Gn(s). Its order can then be reduced, as in un-
weighted balanced truncation, by discarding the modes corresponding to the
smallest Hankel singular values. In the sequel,

Ĝr = fwbt (Gn, Wl, Wr, r) (2.180)

will denote the r-th order system produced by frequency-weighted balanced
truncation of Gn(s). An upper bound of the approximation error in the H∞
norm is given by (Kim et al., 1995)

∥∥Wl(s)
(
Gn(s) −Gr(s)

)
Wr(s)

∥∥
∞

≤ 2
n∑

i=r+1

√
ς2i + (αi + βi)ς

3/2
i + αiβiςi (2.181)
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where

αi = ‖Ξi−1(s)‖∞
∥∥∥CrΦr(s)P

1/2
33

∥∥∥
∞

(2.182a)

βi =
∥∥∥Q1/2

11 Φl(s)Bl

∥∥∥
∞

‖Γi−1(s)‖∞ (2.182b)

Ξi−1(s) = Ai−1
21 (sI −Ai−1)−1Bi−1 + bi (2.182c)

Γi−1(s) = Ci−1(sI −Ai−1)−1Ai−1
12 + ci (2.182d)

Φr(s) = (sI −Ar)−1 (2.182e)

Φl(s) = (sI −Al)−1 (2.182f)

Ai =
[
Ai−1 Ai−1

12

Ai−1
21 aii

]
(2.182g)

Bi =
[
Bi−1

bi

]
(2.182h)

Ci =
[
Ci−1 ci

]
(2.182i)

and bi and ci are the i-th row of Bi and the i-th column of Ci, respectively,
and An = A, Bn = B, Cn = C.

Let us finally remark that the reduced-order model Ĝr is guaranteed to be
stable if frequency weighting is used at only one side of the reduction criterion.

2.7.6 Balanced Truncation of Discrete-time Systems

The balanced truncation and frequency-weighted balanced truncation proce-
dures are exactly the same in the discrete-time case, except that the controlla-
bility and observability Gramians are respectively the solutions of the discrete
Lyapunov equations

APAT − P +BBT = 0 (2.183)

and

AT QA− Q + CTC = 0 (2.184)

Observe that, since the H2 norm of a stable system is upper bounded by its
H∞ norm in the discrete-time case (Boyd and Doyle, 1987), the H∞ upper
bound of the approximation error, computed from the Hankel singular values
(both in the unweighted and single-side weighted cases), is also an H2 upper
bound of it.




