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Summary
Recent progress in biology, medical science, bioinformatics, and
biotechnology has led to the accumulation of tremendous amounts of
biodata that demands in-depth analysis. On the other hand, recent
progress in data mining research has led to the development of
numerous efficient and scalable methods for mining interesting patterns
in large databases. The question becomes how to bridge the two fields,
data mining and bioinformatics, for successful mining of biological data.
In this chapter, we present an overview of the data mining methods that
help biodata analysis. Moreover, we outline some research problems
that may motivate the further development of data mining tools for
the analysis of various kinds of biological data.

2.1 Introduction

In the past two decades we have witnessed revolutionary changes in
biomedical research and biotechnology and an explosive growth of biomedical
data, ranging from those collected in pharmaceutical studies and cancer
therapy investigations to those identified in genomics and proteomics research
by discovering sequential patterns, gene functions, and protein-protein
interactions. The rapid progress of biotechnology and biodata analysis
methods has led to the emergence and fast growth of a promising new field:
bioinformatics. On the other hand, recent progress in data mining research
has led to the development of numerous efficient and scalable methods
for mining interesting patterns and knowledge in large databases, ranging
from efficient classification methods to clustering, outlier analysis, frequent,
sequential, and structured pattern analysis methods, and visualization and
spatial/temporal data analysis tools.
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The question becomes how to bridge the two fields, data mining and
bioinformatics, for successful data mining of biological data. In this chapter,
we present a general overview of data mining methods that have been
successfully applied to biodata analysis. Moreover, we analyze how data
mining has helped efficient and effective biomedical data analysis and outline
some research problems that may motivate the further development of
powerful data mining tools in this field. Our overview is focused on three
major themes: (1) data cleaning, data preprocessing, and semantic integration
of heterogeneous, distributed biomedical databases, (2) exploration of
existing data mining tools for biodata analysis, and (3) development of
advanced, effective, and scalable data mining methods in biodata analysis.

• Data cleaning, data preprocessing, and semantic integration of
heterogeneous, distributed biomedical databases

Due to the highly distributed, uncontrolled generation and use of a wide
variety of biomedical data, data cleaning, data preprocessing, and the
semantic integration of heterogeneous and widely distributed biomedical
databases, such as genome databases and proteome databases, have become
important tasks for systematic and coordinated analysis of biomedical
databases. This highly distributed, uncontrolled generation of data has
promoted the research and development of integrated data warehouses
and distributed federated databases to store and manage different forms of
biomedical and genetic data. Data cleaning and data integration methods
developed in data mining, such as those suggested in [92, 327], will help
the integration of biomedical data and the construction of data warehouses
for biomedical data analysis.

• Exploration of existing data mining tools for biodata analysis

With years of research and development, there have been many data
mining, machine learning, and statistics analysis systems and tools
available for general data analysis. They can be used in biodata exploration
and analysis. Comprehensive surveys and introduction of data mining
methods have been compiled into many textbooks, such as [165, 171,
431]. Analysis principles are also introduced in many textbooks on
bioinformatics, such as [28, 34, 110, 116, 248]. General data mining and
data analysis systems that can be used for biodata analysis include
SAS Enterprise Miner, SPSS, SPlus, IBM Intelligent Miner, Microsoft
SQLServer 2000, SGI MineSet, and Inxight VizServer. There are also many
biospecific data analysis software systems, such as GeneSpring, Spot Fire,
and VectorNTI. These tools are rapidly evolving as well. A lot of routine
data analysis work can be done using such tools. For biodata analysis, it
is important to train researchers to master and explore the power of these
well-tested and popular data mining tools and packages.
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With sophisticated biodata analysis tasks, there is much room for research
and development of advanced, effective, and scalable data mining methods
in biodata analysis. Some interesting topics follow.

1. Analysis of frequent patterns, sequential patterns and
structured patterns: identification of cooccurring or correlated
biosequences or biostructure patterns

Many studies have focused on the comparison of one gene with another.
However, most diseases are not triggered by a single gene but by
a combination of genes acting together. Association and correlation
analysis methods can be used to help determine the kinds of genes or
proteins that are likely to cooccur in target samples. Such analysis would
facilitate the discovery of groups of genes or proteins and the study
of interactions and relationships among them. Moreover, since biodata
usually contains noise or nonperfect matches, it is important to develop
effective sequential or structural pattern mining algorithms in the noisy
environment [443].

2. Effective classification and comparison of biodata

A critical problems in biodata analysis is to classify biosequences or
structures based on their critical features and functions. For example,
gene sequences isolated from diseased and healthy tissues can be
compared to identify critical differences between the two classes of
genes. Such features can be used for classifying biodata and predicting
behaviors. A lot of methods have been developed for biodata classification
[171]. For example, one can first retrieve the gene sequences from the
two tissue classes and then find and compare the frequently occurring
patterns of each class. Usually, sequences occurring more frequently in the
diseased samples than in the healthy samples indicate the genetic factors
of the disease; on the other hand, those occurring only more frequently
in the healthy samples might indicate mechanisms that protect the body
from the disease. Similar analysis can be performed on microarray data
and protein data to identify similar and dissimilar patterns.

3. Various kinds of cluster analysis methods

Most cluster analysis algorithms are based on either Euclidean distances
or density [165]. However, biodata often consist of a lot of features that
form a high-dimensional space. It is crucial to study differentials with
scaling and shifting factors in multidimensional space, discover pairwise
frequent patterns and cluster biodata based on such frequent patterns.
One interesting study using microarray data as examples can be found
in [421].
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4. Computational modeling of biological networks

While a group of genes/proteins may contribute to a disease process,
different genes/proteins may become active at different stages of the
disease. These genes/proteins interact in a complex network. Large
amounts of data generated from microarray and proteomics studies
provide rich resources for theoretic study of the complex biological system
by computational modeling of biological networks. If the sequence of
genetic activities across the different stages of disease development can
be identified, it may be possible to develop pharmaceutical interventions
that target the different stages separately, therefore achieving more
effective treatment of the disease. Such path analysis is expected to play
an important role in genetic studies.

5. Data visualization and visual data mining

Complex structures and sequencing patterns of genes and proteins are
most effectively presented in graphs, trees, cubes, and chains by various
kinds of visualization tools. Visually appealing structures and patterns
facilitate pattern understanding, knowledge discovery, and interactive
data exploration. Visualization and visual data mining therefore play
an important role in biomedical data mining.

2.2 Data Cleaning, Data Preprocessing,
and Data Integration

Biomedical data are currently generated at a very high rate at multiple
geographically remote locations with a variety of biomedical devices and by
applying several data acquisition techniques. All bioexperiments are driven
by a plethora of experimental design hypotheses to be proven or rejected
based on data values stored in multiple distributed biomedical databases, for
example, genome or proteome databases. To extract and analyze the data
perhaps poses a much bigger challenge for researchers than to generate the
data [181]. To extract and analyze information from distributed biomedical
databases, distributed heterogeneous data must be gathered, characterized,
and cleaned. These processing steps can be very time-consuming if they
require multiple scans of large distributed databases to ensure the data
quality defined by biomedical domain experts and computer scientists. From
a semantic integration viewpoint, there are quite often challenges due to the
heterogeneous and distributed nature of data since these preprocessing steps
might require the data to be transformed (e.g., log ratio transformations),
linked with distributed annotation or metadata files (e.g., microarray spots
and gene descriptions), or more exactly specified using auxiliary programs
running on a remote server (e.g., using one of the BLAST programs to
identify a sequence match). Based on the aforementioned data quality and
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integration issues, the need for using automated preprocessing techniques
becomes eminent. We briefly outline the strategies for taming the data
by describing data cleaning using exploratory data mining (EDM), data
preprocessing, and semantic integration techniques [91, 165].

2.2.1 Data Cleaning

Data cleaning is defined as a preprocessing step that ensures data quality.
In general, the meaning of data quality is best described by the data
interpretability. In other words, if the data do not mean what one thinks, the
data quality is questionable and should be evaluated by applying data quality
metrics. However, defining data quality metrics requires understanding
of data gathering, delivery, storage, integration, retrieval, mining, and
analysis. Data quality problems can occur in any data operation step (also
denoted as a lifecycle of the data) and their corresponding data quality
continuum (end-to-end data quality). Although conventional definitions of
data quality would include accuracy, completeness, uniqueness, timeliness,
and consistency, it is very hard to quantify data quality by using quality
metrics. For example, measuring accuracy and completeness is very difficult
because each datum would have to be tested for its correctness against
the “true” value and all data values would have to be assessed against all
relevant data values. Furthermore, data quality metrics should measure data
interpretability by evaluating meanings of variables, relationships between
variables, miscellaneous metadata information and consistency of data.

In the biomedical domain, the data quality continuum involves answering
a few basic questions.

1. How do the data enter the system? The answers can vary a lot
because new biomedical technologies introduce varying measurement
errors and there are no standards for data file formats. Thus, the
standardization efforts are important for data quality, for instance, the
Minimum Information About a Microarray Experiment (MIAME) [51]
and MicroArray and Gene Expression (MAGE) [381] standardization
efforts for microarray processing, as well as, preemptive (process
management) and retrospective (cleaning and diagnostic) data quality
checks.

2. How are the data delivered? In the world of electronic information and
wireless data transfers, data quality issues include transmission losses,
buffer overflows, and inappropriate preprocessing, such as default value
conversions or data aggregations. These data quality issues have to be
addressed by verifying checksums or relationships between data streams
and by using reliable transmission protocols.

3. Where do the data go after being received? Although physical storage
may not be an issue anymore due to its low cost, data storage
can encounter problems with poor accompanying metadata, missing
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time stamps, or hardware and software constraints, for instance, data
dissemination in Excel spread sheets stored on an Excel-unsupported
platform. The solution is frequently thorough planning followed by
publishing data specifications.

4. Are the data combined with other data sets? The integration of new data
sets with already archived data sets is a challenge from the data quality
viewpoint since the data might be heterogeneous (no common keys) with
different variable definitions of data structures (e.g., legacy data and
federated data) and time asynchronous. In the data mining domain, a
significant number of research papers have addressed the issue of dataset
integrations, and the proposed solutions involve several matching and
mapping approaches. In the biomedical domain, data integration becomes
essential, although very complex, for understanding a whole system. Data
are generated by multiple laboratories with various devices and data
acquisition techniques while investigating a broad range of hypotheses at
multiple levels of system ontology.

5. How are the data retrieved? The answers to this question should be
constructed with respect to the computational resources and users’ needs.
Retrieved data quality will be constrained by the retrieved data size,
access speed, network traffic, data and database software compatibility,
and the type and correctness of queries. To ensure data quality, one has
to plan ahead to minimize the constraints and select appropriate tools
for data browsing and exploratory data mining (EDM) [92, 327].

6. How are the data analyzed? In the final processing phase, data quality
issues arise due to insufficient biomedical domain expertise, inherent data
variability, and lack of algorithmic scalability for large datasets [136]. As
a solution, any data mining and analysis should be an interdisciplinary
effort because the computer science models and biomedical models have
to come together during exploratory types of analyses [323]. Furthermore,
conducting continuous analyses and cross-validation experiments will
lead to confidence bounds on obtained results and should be used in a
feedback loop to monitor the inherent data variability and detect related
data quality problems.

The steps of microarray processing from start to finish that clearly map to
the data quality continuum are outlined in [181].

2.2.2 Data Preprocessing

What can be done to ensure biomedical data quality and eliminate
sources of data quality corruption for both data warehousing and data
mining? In general, multidisciplinary efforts are needed, including (1) process
management, (2) documentation of biomedical domain expertise, and (3)
statistical and database analyses [91]. Process management in the biomedical
domain should support standardization of content and format [51, 381],
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automation of preprocessing, e.g., microarray spot analysis [26, 28, 150],
introduction of data quality incentives (correct data entries and quality
feedback loops), and data publishing to obtain feedback (e.g., via MedLine
and other Internet sites). Documenting biomedical domain knowledge is not
a trivial task and requires establishing metadata standards (e.g., a document
exchange format MAGE-ML), creating annotation files, and converting
biomedical and engineering logs into metadata files that accompany every
experiment and its output data set. It is also necessary to develop text-
mining software to browse all documented and stored files [439]. In terms of
statistical and database analyses for the biomedical domain, the focus should
be on quantitative quality metrics based on analytical and statistical data
descriptors and on relationships among variables.

Data preprocessing using statistical and database analyses usually
includes data cleaning, integration, transformation, and reduction [165]. For
example, an outcome of several spotted DNA microarray experiments might
be ambiguous (e.g., a background intensity is larger than a foreground
intensity) and the missing values have to be filled in or replaced by a
common default value during data cleaning. The integration of multiple
microarray gene experiments has to resolve inconsistent labels of genes to
form a coherent data store. Mining microarray experimental data might
require data normalization (transformation) with respect to the same control
gene and a selection of a subset of treatments (data reduction), for instance,
if the data dimensionality is prohibitive for further analyses. Every data
preprocessing step should include static and dynamic constraints, such
as foreign key constraints, variable bounds defined by dynamic ranges
of measurement devices, or experimental data acquisition and processing
workflow constraints. Due to the multifaceted nature of biomedical data
measuring complex and context-dependent biomedical systems, there is no
single recommended data quality metric. However, any metric should serve
operational or diagnostic purpose and should change regularly with the
improvement of data quality. For example, the data quality metrics for
extracted spot information can be clearly defined in the case of raw DNA
microarray data (images) and should depend on (a) spot to background
separation and (b) spatial and topological variations of spots. Similarly, data
quality metrics can be defined at other processing stages of biomedical data
using outlier detection (geometric, distributional, and time series outliers),
model fitting, statistical goodness of fit, database duplicate finding, and data
type checks and data value constraints.

2.2.3 Semantic Integration of Heterogeneous Data

One of the many complex aspects in biomedical data mining is semantic
integration. Semantic integration combines multiple sources into a coherent
data store and involves finding semantically equivalent real-world entities
from several biomedical sources to be matched up. The problem arises when,
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for instance, the same entities do not have identical labels, such as, gene id
and g id, or are time asynchronous, as in the case of the same gene being
analyzed at multiple developmental stages. There is a theoretical foundation
[165] for approaching this problem by using correlation analysis in a general
case. Nonetheless, semantic integration of biomedical data is still an open
problem due to the complexity of the studied matter (bioontology) and the
heterogeneous distributed nature of the recorded high-dimensional data.

Currently, there are in general two approaches: (1) construction of
integrated biodata warehouses or biodatabases and (2) construction of a
federation of heterogeneous distributed biodatabases so that query processing
or search can be performed in multiple heterogeneous biodatabases. The
first approach performs data integration beforehand by data cleaning, data
preprocessing, and data integration, which requires common ontology and
terminology and sophisticated data mapping rules to resolve semantic
ambiguity or inconsistency. The integrated data warehouses or databases are
often multidimensional in nature, and indexing or other data structures can
be built to assist a search in multiple lower-dimensional spaces. The second
approach is to build up mapping rules or semantic ambiguity resolution rules
across multiple databases. A query posed at one site can then be properly
mapped to another site to retrieve the data needed. The retrieved results
can be appropriately mapped back to the query site so that the answer
can be understood with the terminology used at the query site. Although
a substantial amount of work has been done in the field of database systems
[137], there are not enough studies of systems in the domain of bioinformatics,
partly due to the complexity and semantic heterogeneity of biodata. We
believe this is an important direction of future research.

2.3 Exploration of Existing Data Mining Tools for
Biodata Analysis

With years of research and development, there have been many data
mining, machine learning, and statistical analysis systems and tools available
for use in biodata exploration and analysis. Comprehensive surveys and
the introduction of data mining methods have been compiled into many
textbooks [165, 171, 258, 281, 431]. There are also many textbooks focusing
exclusively on bioinformatics [28, 34, 110, 116, 248]. Based on the theoretical
descriptions of data mining methods, many general data mining and data
analysis systems have been built and widely used for necessary analyses of
biodata, e.g., SAS Enterprise Miner, SPSS, SPlus, IBM Intelligent Miner,
Microsoft SQLServer 2000, SGI MineSet, and Inxight VizServer. In this
section, we briefly summarize the different types of existing software tools
developed specifically for solving the fundamental bioinformatics problems.
Tables 2.1 and 2.2 provide a list of a few software tools and their Web links.
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Table 2.1. Partial list of bioinformatics tools and software links. These tools
were chosen based on authors’ familiarity. We recognize that there are many other
popular tools.

Sequence analysis
NCBI/BLAST:

http://www.ncbi.nih.gov/BLAST
ClustalW (multi-sequence alignment):

http://www.ebi.ac.uk/clustalw/
HMMER:

http://hmmer.wustl.edu/
PHYLIP:

http://evolution.genetics.washington.edu/phylip.html
MEME (motif discovery and search):

http://meme.sdsc.edu/meme/website/
TRANSFAC:

http://www.cbrc.jp/research/db/TFSEARCH.html
MDScan:

http://bioprospector.stanford.edu/MDscan/
VectorNTI:

http://www.informax.com
Sequencher:

http://www.genecodes.com/
MacVector:

http://www.accelrys.com/products/macvector/

Structure prediction and visualization
RasMol:

http://openrasmol.org/
Raster3D:

http://www.bmsc.washington.edu/raster3d/raster3d.html
Swiss-Model:

http://www.expasy.org/swissmod/
Scope:

http://scop.mrc-lmb.cam.ac.uk/scop/
MolScript:

http://www.avatar.se/molscript/
Cn3D:

http://www.ncbi.nlm.nih.gov/Structure/CN3D/cn3d.shtml

2.3.1 DNA and Protein Sequence Analysis

Sequence comparison, similarity search, and pattern finding are considered
the basic approaches to protein sequence analysis in bioinformatics. The
mathematical theory and basic algorithms of sequence analysis can be dated
to 1960s when the pioneers of bioinformatics developed methods to predict
phylogenetic relationships of the related protein sequences during evolution
[281]. Since then, many statistical models, algorithms, and computation
techniques have been applied to protein and DNA sequence analysis.
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Table 2.2. Partial list of bioinformatics tools and software links.

Genome analysis
PHRED/PHRAP:

http://www.phrap.org/
CAP3:

http://deepc2.zool.iastate.edu/aat/cap/cap.html
Paracel GenomeAssembler:

http://www.paracel.com/products/paracel genomeassembler.php
GenomeScan:

http://genes.mit.edu/genomescan.html
GeneMark:

http://opal.biology.gatech.edu/GeneMark/
GenScan:

http://genes.mit.edu/GENSCAN.html
X-Grail:

http://compbio.ornl.gov/Grail-1.3/
ORF Finder:

http://www.ncbi.nlm.nih.gov/gorf/gorf.html
GeneBuilder:

http://l25.itba.mi.cnr.it/ webgene/genebuilder.html

Pathway analysis and visualization
KEGG:

http://www.genome.ad.jp/kegg/
EcoCyc/MetaCyc:

http://metacyc.org/
GenMapp:

http://www.genmapp.org/

Microarray analysis
ScanAlyze/Cluster/TreeView:

http://rana.lbl.gov/EisenSoftware.htm
Scanalytics: MicroArray Suite:

http://www.scanalytics.com/product/microarray/index.shtmlExpression
Profiler (Jaak Vilo, EBI):

http://ep.ebi.ac.uk/EP/
Knowledge-based analysis of microarray gene expression data using SVM:

http://www.cse.ucsc.edu/research/compbio/genex/genex.html
Silicon Genetics - gene expression software:

http://www.sigenetics.com/cgi/SiG.cgi/index.smf

Most sequence alignment tools were based on a dynamic programming
algorithm [373], including pairwise alignment tools such as the Basic Local
Alignment Search Tool (BLAST) [12] and multiple sequence alignment
tools such as ClustalW [176]. A series of tools was developed to construct
phylogenetic trees based on various probability models and sequence
alignment principles. Many of the phylogenetic tools have been packaged into
software packages, such as PHYLIP and PAUP* [124]. Hidden Markov models
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(HMM) is another widely used algorithm especially in (1) protein family
studies, (2) identification of protein structural motifs, and (3) gene structure
prediction (discussed later). HMMER, which is used to find conserved
sequence domains in a set of related protein sequences and the spacer regions
between them, is one of the popular HMM tools.

Other challenging search problems include promoter search and protein
functional motif search. Several probability models and stochastic methods
have been applied to these problems, including expectation maximization
(EM) algorithms and Gibbs sampling methods [28].

2.3.2 Genome Analysis

Sequencing of a complete genome and subsequent annotation of the features
in the genome pose different types of challenges. First, how is the whole
genome put together from many small pieces of sequences? Second, where are
the genes located on a chromosome? The first problem is related to genome
mapping and sequence assembly. Researchers have developed software tools
to assemble a large number of sequences using similar algorithms to the
ones used in the basic sequence analysis. The widely used algorithms include
PHRAP/Consed and CAP3 [188].

The other challenging problem is related to prediction of gene structures,
especially in eukaryotic genomes. The simplest way to search for a DNA
sequence that encodes a protein is to search for open reading frames (ORFs).
Predicting genes is generally easier and more accurate in prokaryotic than
eukaryotic organisms. The eukaryotic gene structure is much more complex
due to the intron/exon structure. Several software tools, such as GeneMark
[48] and Glimmer [343], can accurately predict genes in prokaryotic genomes
using HMM and other Markov models. Similar methodologies were used to
develop eukaryotic gene prediction tools such as GeneScan [58] and GRAIL
[408].

2.3.3 Macromolecule Structure Analysis

Macromolecule structure analysis involves (1) prediction of secondary
structure of RNA and proteins, (2) comparison of protein structures, (3)
protein structure classification, and (4) visualization of protein structures.
Some of the most popular software tools include DALI for structural
alignment, Cn3d and Rasmol for viewing the 3D structures, and Mfold
for RNA secondary structure prediction. Protein structure databases and
associated tools also play an important role in structure analysis. Protein
Data Bank (PDB), the classification by class, architecture, topology, and
homology (CATH) database, the structural classification of proteins (SCOP)
database, Molecular Modeling Database (MMDB), and Swiss-Model resource
are among the best protein structure resources. Structure prediction is still
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an unsolved, challenging problem. With the rapid development of proteomics
and high throughput structural biology, new algorithms and tools are very
much needed.

2.3.4 Pathway Analysis

Biological processes in a cell form complex networks among gene products.
Pathway analysis tries to build, model, and visualize these networks. Pathway
tools are usually associated with a database to store the information
about biochemical reactions, the molecules involved, and the genes. Several
tools and databases have been developed and are widely used, including
KEGG database (the largest collection of metabolic pathway graphs),
EcoCyc/MetaCyc [212] (a visualization and database tool for building and
viewing metabolic pathways), and GenMAPP (a pathway building tool
designed especially for working with microarray data). With the latest
developments in functional genomics and proteomics, pathway tools will
become more and more valuable for understanding the biological processes
at the system level (section 2.7).

2.3.5 Microarray Analysis

Microarray technology allows biologists to monitor genome-wide patterns of
gene expression in a high-throughput fashion. Applications of microarrays
have resulted in generating large volumes of gene expression data with several
levels of experimental data complexity. For example, a “simple” experiment
involving a 10,000-gene microarray with samples collected at five time points
for five treatments with three replicates can create a data set with 0.75 million
data points! Historically, hierarchical clustering [114] was the first clustering
method applied to the problem of finding similar gene expression patterns
in microarray data. Since then many different clustering methods have been
used [323], such as k-means, a self-organizing map, a support vector machine,
association rules, and neural networks. Several commercial software packages,
e.g., GeneSpring or Spotfire, offer the use of these algorithms for microarray
analysis.

Today, microarray analysis is far beyond clustering. By incorporating
a priori biological knowledge, microarray analysis can become a powerful
method for modeling a biological system at the molecular level. For example,
combining sequence analysis methods, one can identify common promoter
motifs from the clusters of coexpressed genes in microarray data using various
clustering methods. Furthermore, any correlation among gene expression
profiles can be modeled by artificial neural networks and can hopefully
reverse-engineer the underlying genetic network in a cell (section 2.7).
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2.4 Discovery of Frequent Sequential and
Structured Patterns

Frequent pattern analysis has been a focused theme of study in data mining,
and a lot of algorithms and methods have been developed for mining frequent
patterns, sequential patterns, and structured patterns [6, 165, 437, 438].
However, not all the frequent pattern analysis methods can be readily adopted
for the analysis of complex biodata because many frequent pattern analysis
methods are trying to discover “perfect” patterns, whereas most biodata
patterns contain a substantial amount of noise or faults. For example, a
DNA sequential pattern usually allows a nontrivial number of insertions,
deletions, and mutations. Thus our discussion here is focused on sequential
and structured pattern mining potential adaptable to noisy biodata instead
of a general overview of frequent pattern mining methods.

In bioinformatics, the discovery of frequent sequential patterns (such as
motifs) and structured patterns (such as certain biochemical structures) could
be essential to the analysis and understanding of the biological data. If a
pattern occurs frequently, it ought to be important or meaningful in some
way. Much work has been done on discovery of frequent patterns in both
sequential data (unfolded DNA, proteins, and so on) and structured data
(3D model of DNA and proteins).

2.4.1 Sequential Pattern

Frequent sequential pattern discovery has been an active research area for
years. Many algorithms have been developed and deployed for this purpose.
One of the most popular pattern (motif) discovery methods is BLAST [12],
which is essentially a pattern matching algorithm. In nature, amino acids
(in protein sequences) and nucleotides (in DNA sequences) may mutate.
Some mutations may occur frequently while others may not occur at all.
The mutation scoring matrix [110] is used to measure the likelihood of the
mutations.

Figure 2.1 is one of the scoring matrices. The entry associated with row
Ai and column Aj is the score for an amino acid Ai mutating to Aj . For
a given protein or DNA sequence S, BLAST will find all similar sequences
S′ in the database such that the aggregate mutation score from S to S′

is above some user-specified threshold. Since an amino acid may mutate to
several others, if all combinations need to be searched, the search time may
grow exponentially. To reduce the search time, BLAST partitions the query
sequence into small segments (3 amino acids for a protein sequence and 11
nucleotides for DNA sequences) and searches for the exact match on the small
segments and stitches the segments back up after the search. This technique
can reduce the search time significantly and yield satisfactory results (close
to 90% accuracy).
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Fig. 2.1. BLOSUM 50 mutation scoring matrix.

Tandem repeat (TR) detection is one of the active research areas. A
tandem repeat is a segment that occurs more than a certain number of times
within a DNA sequence. If a pattern repeats itself a significant number of
times, biologists believe that it may signal some importance. Due to the
presence of noise, the actual occurrences of the pattern may be different.
In some occurrences the pattern may be shortened—some nucleotide is
missing—while in other occurrences the pattern may be lengthened—a noise
nucleotide is added. In addition, the occurrence of a pattern may not follow
a fixed period. Several methods have been developed for finding tandem
repeats. In [442], the authors proposed a dynamic programming algorithm
to find all possible asynchronous patterns, which allows a certain type of
imperfection in the pattern occurrences. The complexity of this algorithm is
O(N2) where N is the length of the sequence.

The number of amino acids in a protein sequence is around several
hundred. It is useful to find some segments that appear in a number of
proteins. As mentioned, the amino acid may mutate without changing its
biological functions. Thus, the occurrences of a pattern may be different. In
[443], the authors proposed a model that takes into account the mutations
of amino acids. A mutation matrix is constructed to represent the likelihood
of mutation. The entry at row i and column j is the probability for amino
acid i to mutate to j. For instance, assume there is a segment ACCD in
a protein. The probability that it is mutated from ABCD is Prob(A|A) ×
Prob(C|B) × Prob(C|C) × Prob(D|D). This probability can be viewed as
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the expected chance of occurrences of the pattern ABCD given that the
protein segment ACCD is observed. The mutation matrix serves as a bridge
between the observations (protein sequences) and the true underlying models
(frequent patterns). The overall occurrence of a pattern is the aggregated
expected number of occurrences of the pattern in all sequences. A pattern is
considered frequent if its aggregated expected occurrences are over a certain
threshold. In addition, [443] also proposed a probabilistic algorithm that can
find all frequent patterns efficiently.

2.4.2 Mining Structured Patterns in Biodata

Besides finding sequential patterns, many biodata analysis tasks need to find
frequent structured patterns, such as frequent protein or chemical compound
structures from large biodata sets. This promotes research into efficient
mining of frequent structured patterns. Two classes of efficient methods
for mining structured patterns have been developed: one is based on the
apriori-like candidate generation and test approach [6], such as FSG [234],
and the other is based on a frequent pattern growth approach [166] by
growing frequent substructure patterns and reducing the size of the projected
patterns, such as gSpan [436]. A performance study in [436] shows that a
gSpan-based method is much more efficient than an FSG-based method.

Mining substructure patterns may still encounter difficulty in both the
huge number of patterns generated and mining efficiency. Since a frequent
large structure implies that all its substructures must be frequent as well,
mining frequent large, structured patterns may lead to an exponential growth
of search space because it would first find all the substructure patterns. To
overcome this difficulty, a recent study in [437] proposes to mine only closed
subgraph patterns rather than all subgraph patterns, where a subgraph G is
closed if there exists no supergraph G′ such as G ⊂ G′ and support(G) =
support(G′) (i.e., they have the same occurrence frequency). The set of closed
subgraph patterns has the same expressive power of the set of all subgraph
patterns but is often orders of magnitude more compact than the latter
in dense graphs. An efficient mining method called CloseGraph has been
developed in [437], which also demonstrates order-of-magnitude performance
gain in comparison with gSpan.

Figure 2.2 shows the discovered closed subgraph patterns for class
CA compounds from the AIDS antiviral screen compound dataset of the
Developmental Therapeutics Program of NCI/NIH (March 2002 release). One
can see that by lowering the minimum support threshold (i.e., occurrence
frequency), larger chemical compounds can be found in the dataset.

Such structured pattern mining methods can be extended to other data
mining tasks, such as discovering structure patterns with angles or geometric
constraints, finding interesting substructure patterns in a noisy environment,
or classifying data [99]. For example, one can use the discovered structure
patterns to distinguishing AIDS tissues from healthy ones.
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Fig. 2.2. Discovered substructures from an antiviral screen compound dataset.

2.5 Classification Methods

Each biological object may consist of multiple attributes. The relationship/
interaction among these attributes could be very complicated. In
bioinformatics, classification is one of the popular tools for understanding the
relationships among various conditions and the features of various objects.
For instance, there may be a training dataset with two classes of cells, normal
cells and cancer cells. It is very important to classify these cells so that
when a new cell is obtained, it can be automatically determined whether
it is cancerous. Classification has been an essential theme in statistics,
data mining, and machine learning, with many methods proposed and
studied [165, 171, 275, 431]. Typical methods include decision trees, Bayesian
classification, neural networks, support vector machines (SVMs), the k-
nearest neighbor (KNN) approach, associative classification, and so on. We
briefly describe three methods: SVM, decision tree induction, and KNN.

The support vector machine (SVM) [59] has been one of the most popular
classification tools in bioinformatics. The main idea behind SVM is the
following. Each object can be mapped as a point in a high-dimensional space.
It is possible that the points of the two classes cannot be separated by a
hyperplane in the original space. Thus, a transformation may be needed.
These points may be transformed to a higher dimensional space so that they
can be separated by a hyperplane. The transformation may be complicated. In
SVM, the kernel is introduced so that computing the separation hyperplane
becomes very fast. There exist many kernels, among which three are the
most popular: linear kernel, polynomial kernel, and Gaussian kernel [353].
SVM usually is considered the most accurate classification tool for many
bioinformatics applications. However, there is one drawback: the complexity
of training an SVM is O(N2) where N is the number of objects/points. There
are recent studies, such as [444], on how to scale up SVMs for large datasets.
When handling a large number of datasets, it is necessary to explore scalable
SVM algorithms for effective classification.

Another popularly used classifier is the decision-tree classifier [171, 275].
When the number of dimensions is low, i.e., when there exist only a small
number of attributes, the accuracy of the decision tree is comparable to that
of SVM. A decision tree can be built in linear time with respect to the
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number of objects. In a decision tree, each internal node is labeled with a list
of ranges. A range is then associated with a path to a child. If the attribute
value of an object falls in the range, then the search travels down the tree via
the corresponding path. Each leaf is associated with a class label. This label
will be assigned to the objects that fall in the leaf node. During the decision
tree construction, it is desirable to choose the most distinctive features or
attributes at the high levels so that the tree can separate the two classes as
early as possible. Various methods have been tested for choosing an attribute.
The decision tree may not perform well with high-dimensional data.

Another method for classification is called k-nearest neighbor (KNN)
[171]. Unlike the two preceding methods, the KNN method does not build a
classifier on the training data. Instead, when a test object arrives, it searches
for the k neighboring points closest to the test object and uses their labels
to label the new object. If there are conflicts among the neighboring labels,
a majority voting algorithm is applied. Although this method does not incur
any training time, the classification time may be expensive since finding KNN
in a high-dimensional space is a nontrivial task.

2.6 Cluster Analysis Methods

Clustering is a process that groups a set of objects into clusters so that
the similarity among the objects in the same cluster is high, while that
among the objects in different clusters is low. Clustering has been popular
in pattern recognition, marketing, social and scientific studies, as well as in
biodata analysis. Effective and efficient cluster analysis methods have also
been studied extensively in statistics, machine learning, and data mining,
with many approaches proposed [165, 171], including k-means, k-medoids,
SOM, hierarchical clustering (such as DIANA [216], AGNES [216], BIRCH
[453], and Chameleon [215]), a density-based approach (such as Optics [17]),
and a model-based approach. In this section, we introduce two recently
proposed approaches for clustering biodata: (1) clustering microarray data
by biclustering or p-clustering, and (2) clustering biosequence data.

2.6.1 Clustering Microarray Data

Microarray has been a popular method for representing biological data. In
the microarray gene expression dataset, each column represents a condition,
e.g., arobetic, acid, and so on. Each row represents a gene. An entry is
the expression level of the gene under the corresponding condition. The
expression level of some genes is low across all the conditions while others
have high expression levels. The absolute expression level may be a good
indicator not of the similarity among genes but of the fluctuation of the
expression levels. If the genes in a set exhibit similar fluctuation under all
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conditions, these genes may be coregulated. By discovering the coregulation,
we may be able to refer to the gene regulative network, which may enable
us to better understand how organisms develop and evolve. Row clustering
[170] is proposed to cluster genes that exhibit similar behavior or fluctuation
across all the conditions.

However, clustering based on the entire row is often too restricted. It
may reveal the genes that are very closely coregulated. However, it cannot
find the weakly regulated genes. To relax the model, the concept of bicluster
was introduced in [74]. A bicluster is a subset of genes and conditions such
that the subset of genes exhibits similar fluctuations under a given subset
of conditions. The similarity among genes is measured as the squared mean
residue error. If the similarity measure (squared mean residue error) of a
matrix satisfies a certain threshold, it is a bicluster. Although this model is
much more flexible than the row clusters, the computation could be costly due
to the absence of pruning power in the bicluster model. It lacks the downward
closure property typically associated with frequent patterns [165]. In other
words, if a supermatrix is a bicluster, none of its submatrixes is necessarily
a bicluster. As a result, one may have to consider all the combinations of
columns and rows to identify all the biclusters. In [74], a nondeterministic
algorithm is devised to discover one bicluster at a time. After a bicluster is
discovered, its entries will be replaced by random value and a new bicluster
will be searched for in the updated microarray dataset. In this scheme, it
may be difficult to discover the overlapped cluster because some important
value may be replaced by random value. In [441], the authors proposed a new
algorithm that can discover the overlapped biclusters.

Bicluster uses squared mean residue error as the indicator of similarity
among a set of genes. However, this leads to a problem: For a set of genes that
are highly similar, the squared mean residue error could still be high. Even
after including a new random gene in the cluster, the resulting cluster should
also have high correlation; as a result, it may still qualify as a bicluster.
To solve this problem, the authors of [421] proposed a new model, called
p-clusters. In the p-cluster model, it is required that any 2-by-2 submatrix
(two genes and two conditions) [x11, x12, y11, y12] of a p cluster satisfies the
formula |(x11 − x12) − (y11 − y12)| ≤ δ where δ is some specified threshold.
This requirement is able to remove clusters that are formed by some strong
coherent genes and some random genes. In addition, a novel two-way pruning
algorithm is proposed, which enables the cluster discovery process be carried
out in a more efficient manner on average [421].

2.6.2 Clustering Sequential Biodata

Biologists believe that the functionality of a gene depends largely on its
layout or the sequential order of amino acids or nucleotides. If two genes
or proteins have similar components, their functionality may be similar.
Clustering the biological sequences according to their components may



Survey of Biodata Analysis from a Data Mining Perspective 27

reveal the biological functionality among the sequences. Therefore, clustering
sequential data has received a significant amount of attention recently. The
foundation of any clustering algorithm is the measure of similarity between
two objects (sequences). Various measurements have been proposed. One
possible approach is the use of edit distance [160] to measure the distance
between each pair of sequences. This solution is not ideal because, in addition
to its inefficiency in calculation, the edit distance captures only the optimal
global alignment between a pair of sequences; it ignores many other local
alignments that often represent important features shared by the pair of
sequences. Consider the three sequences aaaabbb, bbbaaaa, and abcdefg. The
edit distance between aaaabbb and bbbaaaa is 6 and the edit distance between
aaaabbb and abcdefg is also 6, to a certain extent contradicting the intuition
that aaaabbb is more similar to bbbaaaa than to abcdefg. These overlooked
features may be very crucial in producing meaningful clusters. Even though
allowing block operations1 [258, 291] may alleviate this weakness to a certain
degree, the computation of edit distance with block operations is NP-hard
[291]. This limitation of edit distance, in part, has motivated researchers to
explore alternative solutions.

Another approach that has been widely used in document clustering is
the keyword-based method. Instead of being treated as a sequence, each
text document is regarded as a set of keywords or phrases and is usually
represented by a weighted word vector. The similarity between two documents
is measured based on keywords and phrases they share and is often defined in
some form of normalized dot-product. A direct extension of this method to
generic symbol sequences is to use short segments of fixed length q (generated
using a sliding window through each sequence) as the set of “words” in the
similarity measure. This method is also referred to in the literature [154]
as the q-gram based method. While the q-gram based approach enables
significant segments (i.e., keywords/phrases/q grams) to be identified and
used to measure the similarity between sequences regardless of their relative
positions in different sequences, valuable information may be lost as a result
of ignoring sequential relationship (e.g., ordering, correlation, dependency,
and so on) among these segments, which impacts the quality of clustering.

Recently statistics properties of sequence construction were used to
assess the similarity among sequences in a sequence clustering system,
CLUSEQ [441]. Sequences belonging to one cluster may subsume to the
same probability distribution of symbols (conditioning on the preceding
segment of a certain length), while different clusters may follow different
underlying probability distributions. This feature, typically referred to as
short memory, which is common to many applications, indicates that, for a
certain sequence, the empirical probability distribution of the next symbol
given the preceding segment can be accurately approximated by observing

1A consecutive block can be inserted/deleted/shifted/reversed in a sequence with
a constant cost with regard to the edit distance.
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no more than the last L symbols in that segment. Significant features of
such probability distribution can be very powerful in distinguishing different
clusters. By extracting and maintaining significant patterns characterizing
(potential) sequence clusters, one could easily determine if a sequence should
belong to a cluster by calculating the likelihood of (re)producing the sequence
under the probability distribution that characterizes the given cluster. To
support efficient maintenance and retrieval of the probability entries,2 a
novel variation of the suffix tree [157], namely the probabilistic suffix tree
(PST), is proposed in [441], and it is employed as a compact representation
for organizing the derived (conditional) probability distribution for a cluster
of sequences. A probability vector is associated with each node to store the
probability distribution of the next symbol given the label of the node as the
preceding segment. These innovations enable the similarity estimation to be
performed very fast, which offers many advantages over alternative methods
and plays a dominant role in the overall performance of the clustering
algorithm.

2.7 Computational Modeling of Biological Networks

Computational modeling of biological networks has gained much of its
momentum as a result of the development of new high-throughput
technologies for studying gene expressions (e.g., microarray technology) and
proteomics (e.g., mass spectrometry, 2D protein gel, and protein chips). Large
amounts of data generated by gene microarray and proteomics technologies
provide rich resources for theoretic study of the complex biological system.
Recent advances in this field have been reviewed in several books [29, 49].

2.7.1 Biological Networks

The molecular interactions in a cell can be represented using graphs of
network connections similar to the network of power lines. A set of connected
molecular interactions can be considered as a pathway. The cellular system
involves complex interactions between proteins, DNA, RNA, and smaller
molecules and can be categorized in three broad subsystem: metabolic network
or pathway, protein network, and genetic or gene regulatory network.

Metabolic network represents the enzymatic processes within a cell,
which provide energy and building blocks for the cell. It is formed by the
combination of a substrate with an enzyme in a biosynthesis or degradation
reaction. Typically a mathematical representation of the network is a graph
with vertices being all the compounds (substrates) and the edges linking two
adjacent substrates. The catalytic activity of enzymes is regulated in vivo by

2Even though the hidden Markov model can be used for this purpose, its
computational inefficiency prevents it from being applied to a large dataset.
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multiple processes including allosteric interactions, extensive feedback loops,
reversible covalent modifications, and reversible peptide-bond cleavage [29].
For well-studied organisms, especially microbes such as E. coli, considerable
information about metabolic reactions has been accumulated through many
years and organized into large online databases, such as EcoCyc [212].

Protein network is usually meant to describe communication and
signaling networks where the basic reaction is between two proteins. These
protein-protein interactions are involved in signal transduction cascade such
as p53 signaling pathway. Proteins are functionally connected by post-
translational, allosteric interactions, or other mechanisms into biochemical
circuits [29].

Genetic network or regulatory network refers to the functional inference
of direct causal gene interactions. According to the Central Dogma DNA →
RNA → Protein → functions, gene expression is regulated at many molecular
levels. Gene products interact at different levels. The analysis of large-scale
gene expression can be conceptualized as a genetic feedback network. The
ultimate goal of microarray analysis is the complete reverse engineering of the
genetic network. The following discussion will focus on the genetic network
modeling.

2.7.2 Modeling of Networks

A systematic approach to modeling regulatory networks is essential to
the understanding of their dynamics. Network modeling has been used
extensively in social and economical fields for many years [377]. Recently
several high-level models have been proposed for the regulatory network
including Boolean networks, continuous systems of coupled differential
equations, and probabilistic models. These models have been summarized
by Baldi and Hartfield [29] as follows.

Boolean networks assume that a protein or a gene can be in one of two
states: active or inactive, symbolically represented by 1 or 0. This binary
state varies in time and depends on the state of the other genes and proteins
in the network through a discrete equation:

Xi(t+ 1) = Fi[X1(t), . . . , XN (t)], (2.1)

where function Fi is a Boolean function for the update of the ith element
as a function of the state of the network at time t [29]. Figure 2.3 gives a
simple example. The challenge of finding a Boolean network description lies
in inferring the information about network wiring and logical rules from the
dynamic output (see Figure 2.3) [252].

Gene expression patterns contain much of the state information of
the genetic network and can be measured experimentally. We are facing
the challenge of inferring or reverse-engineering the internal structure of
this genetic network from measurements of its output. Genes with similar
temporal expression patterns may share common genetic control processes
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1 0 1 0 1 1

(c) Dynamic output

Fig. 2.3. Target Boolean network for reverse engineering: (a) The network wiring
and (b) logical rules determine (c) the dynamic output.

and may therefore be related functionally. Clustering gene expression patterns
according to a similarity or distance measure is the first step toward
constructing a wiring diagram for a genetic network [378].

Continuous model/Differential equations can be an alternative model to
the Boolean network. In this model, the state variables X are continuous and
satisfy a system of differential equations of the form

dXi

dt
= Fi[X1(t), . . . , XN (t), I(t)], (2.2)

where the vector I(t) represents some external input into the system. The
variables Xi can be interpreted as representing concentrations of proteins or
mRNAs. Such a model has been used to model biochemical reactions in the
metabolic pathways and gene regulation. Most of the models do not consider
spatial structure. Each element in the network is characterized by a single
time-dependent concentration level. Many biological processes, however, rely
heavily on spatial structure and compartmentalization. It is necessary to
model the concentration in both space and time with a continuous formalism
using partial differential equations [29].

Bayesian networks are provided by the theory of graphical models in
statistics. The basic idea is to approximate a complex multidimensional
probability distribution by a product of simpler local probability
distributions. A Bayesian network model for a genetic network can be
presented as a directed acyclic graph (DAG) with N nodes. The nodes may
represent genes or proteins and the random variables Xi levels of activity.
The parameters of the model are the local conditional distributions of each
random variable given the random variables associated with the parent nodes,

P (X1, . . . , XN ) =
∏

i

P (Xi|Xj : j ∈ N (i)), (2.3)

where N (i) denotes all the parents of vertex i. Given a data setD representing
expression levels derived using DNA microarray experiments, it is possible
to use learning techniques with heuristic approximation methods to infer
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the network architecture and parameters. However, data from microarray
experiments are still limited and insufficient to completely determine a single
model, and hence people have developed heuristics for learning classes of
models rather than single models, for instance, models for a set of coregulated
genes [29].

2.8 Data Visualization and Visual Data Mining

The need for data visualization and visual data mining in the biomedical
domain is motivated by several factors. First, it is motivated by the
huge size, the great complexity and diversity of biological databases; for
example, a complete genome of the yeast Saccharomyces cerevisiae is 12
million base pairs, of humans 3.2 billion base pairs. Second, the data-
producing biotechnologies have been progressing rapidly and include spotted
DNA microarrays, oligonucleotide microarrays, and serial analyses of gene
expression (SAGE). Third, the demand for bioinformatics services has been
dramatically increasing since the biggest scientific obstacles primarily lie in
storage and analysis [181]. Finally, visualization tools are required by the
necessary integration of multiple data resources and exploitation of biological
knowledge to model complex biological systems. It is essential for users to
visualize raw data (tables, images, point information, textual annotations,
other metadata), preprocessed data (derived statistics, fused or overlaid sets),
and heterogeneous, possibly distributed, resulting datasets (spatially and
temporally varying data of many types).

According to [122], the types of visualization tools can be divided into (1)
generic data visualization tools, (2) knowledge discovery in databases (KDD)
and model visualization tools, and (3) interactive visualization environments
for integrating data mining and visualization processes.

2.8.1 Data Visualization

In general, visualization utilizes the capabilities of the human visual system to
aid data comprehension with the help of computer-generated representations.
The number of generic visualization software products is quite large and
includes AVS, IBM Visualization Data Explorer, SGI Explorer, Visage,
Khoros, S-Plus, SPSS, MatLab, Mathematica, SciAn, NetMap, SAGE, SDM
and MAPLE. Visualization tools are composed of (1) visualization techniques
classified based on tasks, data structure, or display dimensions, (2) visual
perception type, e.g., selection of graphical primitives, attributes, attribute
resolution, the use of color in fusing primitives, and (3) display techniques,
e.g., static or dynamic interactions; representing data as line, surface or
volume geometries; showing symbolic data as pixels, icons, arrays or graphs
[122]. The range of generic data visualization presentations spans line
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graphs, scatter plots, 2D isosurfaces, 3D isosurfaces, rubber sheets, volume
visualizations, parallel coordinates, dimensional stacking, ribbons with twists
based on vorticity, streaklines using three time frames, combinations of
slicing and isosurface, and scalar or vector or star glyphs. Most of these
visualization forms are well suited for two-, three-, and four-dimensional
data. However, special attention should be devoted to high-dimensional
data visualization since biomedical information visualization quite often
involves displaying heterogeneous multidimensional data. The list of high-
dimensional table visualizations includes parallel coordinates, dimensional
stacking (general logic diagrams or multiple nesting of dimensions using
treemaps to display a 5D view of the DNA Exon/Intron data), multiple line
graphs, scatter plot matrices (e.g., hyperslice and hyperbox), multiple bar
charts, permutation matrices, survey “point-to-line” graphs, animations of
scatter plots (the Grand Tour or the projection pursuit techniques), “point-
to-curve” graphs (Andrew’s curves), glyphs and icon-based visualization,
the display of recursive correlation between dimensions (fractal foams),
radial or grid or circular parallel coordinate visualizations (Radviz, Gridviz,
overlapping star plots), and finally clustering visualization using dendrograms
or Kohonen nets [122]. The most frequent high-dimensional biomedical
data visualization is clustering visualization because of its direct use in
studies searching for similarities and differences in biological materials.
Nonetheless, one should also mention the applications of other sophisticated
visualization systems, such as virtual reality environments for exploratory
and training purposes, collaborative visualization systems for basic research
(NCSA Biology Workbench), and telemedicine and telesurgery. In future,
collaborative visualization systems would benefit from grid computing,
scalable visualization capabilities, and integration with the tools providing
qualitative views of a dataset [267].

2.8.2 KDD and Model Visualization

Visual data mining discovers implicit and useful knowledge from large
data sets using data and/or knowledge visualization techniques [165]. It
is the human visual and brain system that gives us the power of data
model understanding and phenomenon comprehension based on visual data
mining. While KDD and data mining experts focus on the KDD process
and generate data models, researchers studying human computer interfaces,
computer graphics, multimedia systems, pattern recognition, and high-
performance computing work on effective visual data model visualizations.
The benefits of data-mining model visualization are threefold [122]. First,
anyone conducting the data analysis has to trust the developed model. In
addition to good quantitative measures of “trust,” visualization can reveal
several model aspects to increase our trust. Second, good model visualization
improves understanding of the model, especially semantic understanding.
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Third, several data mining techniques lead to multiple data models, and
it is natural to ask questions about model comparisons.

Comparing many data models requires establishing appropriate metrics,
visualizing model differences, and interpreting the differences. Thus,
appropriate model visualization is critical for interpreting data. In the
biomedical domain, visual data mining delivers presentations of data mining
models and helps interpret them in the biological domain. For example,
visualization of decision trees, clusters, and generalized or association rules
does not fulfill its purpose unless an expert biologist can connect the visual
data model representation with the underlying biological phenomenon. Thus,
many commercial software packages support model visualization tools, for
instance, software by Spotfire, InforMax, or Affymetrics. Nevertheless, there
is still a need to develop a metric to evaluate effectiveness of the variety of
visualization tools and to permeate the KDD process with visualization to
give useful insights about data. Figure 2.4 shows how microarray processing
steps can be combined with visual data mining (inspection) of spot features
and labels obtained by clustering.

Fig. 2.4. Example of visualization combined with visual inspection of spotted DNA
microarray data using I2K software developed at NCSA.
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2.8.3 Integration of Data Mining and Visualization Processes

Having available all generic visualization tools and visualizations of data
models, one would like to build an environment for visualization of the
knowledge discovery in databases (KDD) process including exploratory data
mining. In the KDD process, defined as the process of discovering useful
knowledge within data [123], exploratory data mining is a class of methods
used by the KDD process to find a pattern that is valid, novel, potentially
useful, and ultimately understandable [122]. From a user viewpoint, the role
of a user can be either passive, e.g., viewing data without any significant
influence on the conducted data mining, or active, e.g., making decisions
based on presented information visualization. In addition, the integration of
data mining and visualization should be realized by various combinations
of data mining and visualization components and characterized by seamless
interface and repeatable execution at any workflow point. From a software
design viewpoint, the integration environment has to be designed (a) with
modular components performing individual workflow steps and (b) with
common data objects so that the objects can be easily passed between
processing and visualization components [122]. There are several software
integration packages, e.g., D2K by NCSA and Iris Explorer by SGI, that meet
these integration requirements by using a visual programming paradigm.

In the biomedical domain, integration challenges remain in developing
software tools and environments that can be used for solving biological
problems rather than general data mining problems. For example, there is a
need for an integrated data workflow for (a) comparative studies visualizing
comparisons of genes from different species, (b) multilevel studies visualizing
phylogenetic trees at several levels of detail, (c) interactive studies visualizing
polymer docking for drug design, and (d) mapping gene function in the
embryo [267]. Building software environments of this kind requires not only
bringing together data mining and visualization researchers but also unifying
the domain-specific languages for common elements, e.g., defining terms
for input and output data variables, intermediate data products, and user
interfaces. This type of project has been demonstrated by Variagenics, Inc.
and Small Design Firm in a nucleic acid sequence of the human genome
consisting of 3.2 billion base pairs and displayed in a coherent three-
dimensional space while preserving accurate spatial and size relationships
[3]. The last but not the least important issue is related to visualization
of the exponentially increasing volume of biological data that must utilize
distributed computational resources and interoperability of all existing tools.
This issue is being addressed by the development of (a) policies on data
sharing and standards [51, 381], (b) computational grids, and (c) visualization
techniques for large data sets [162].
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2.9 Emerging Frontiers

There are many emerging technologies and research frontiers in
bioinformatics. In this section, we present two emerging frontiers in
bioinformatics research: text mining in bioinformatics and systems biology.

2.9.1 Text Mining in Bioinformatics

Bioinformatics and biodata analysis involve worldwide researchers and
practitioners from many different fields: genetics, biochemistry, molecular
biology, medical science, statistics, computer science, and so on. It becomes
a challenging task to find all the related literature and publications studying
the same genes and proteins from different aspects. This task is made even
more demanding by the huge number of publications in electronic form that
are accessible in medical literature databases on the Web.

The number of studies concerning automated mining of biochemical
knowledge from digital repositories of scientific literature, such as MEDLINE
and BIOSIS, has increased significantly. The techniques have progressed
from simple recognition of terms to extraction of interaction relationships
in complex sentences, and search objectives have broadened to a range of
problems, such as improving homology search, identifying cellular location,
and deriving genetic network technologies [179].

Natural language processing (NLP), also called computational linguistics
or natural language understanding, attempts to process text and deduce its
syntactic and semantic structure automatically. The two primary aspects of
natural language are syntax and lexicon. Syntax defines structures such as the
sentence made up of noun phrases and verb phrases. The smallest structural
entities are words, and information about words is kept in a lexicon, which
is a machine-readable dictionary that may contain a good deal of additional
information about the properties of the words. Many techniques have been
developed to construct lexicons and grammars automatically. For example,
starting with a modest amount of manually parsed text, a parser can be
“trained” by constructing rules that match the manually produced structures.
This is a machine learning approach. Other kinds of analysis methods look
for certain regularities in massive amounts of text. This is the statistical
approach. NLP has become an important area over the last decade with the
increasing availability of large, on-line corpora [23, 380].

The earliest work focused on tasks using only limited linguistic context
and processing at the level of words, such as identifying protein names, or
on tasks relying on word cooccurrence and pattern matching. The field now
has progressed into the area of recognizing interactions between proteins and
other molecules. There are two main methods in this area. The first approach
is based on occurrence statistics of gene names from MEDLINE documents
to predict the connections among genes [386]. The second approach uses
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specific linguistic structures to extract protein interaction information from
MEDLINE documents [105].

Besides the recognition of protein interactions from scientific text, NLP
has been applied to a broad range of information extraction problems in
biology. Combining with the Unified Medical Language System (UMLS),
NLP has been used for learning ontology relations in medical databases and
identifying the structure of noun phrases in MEDLINE texts. Incorporating
literature similarity in each iteration of PSI-BLAST search has shown
that supplementing sequence similarity with information from biomedical
literature search could increase the accuracy of homology search results.
Methods have also been developed (a) to cluster MEDLINE abstracts into
“themes” based on a statistical treatment of terms and unsupervised machine
learning, and (b) to classify terms derived from standard term-weighting
techniques to predict the cellular location of proteins from description
abstracts [179].

2.9.2 Systems Biology

System-level understanding, the approach advocated in systems biology,
requires a shift in focus from understanding genes and proteins to
understanding a system’s structure and dynamics [191]. A system-level
understanding of a biological system can be derived from an insight into four
key properties, according to the prominent systems biologist Kitano [225]:

1. System structures. These include the network of gene interactions
and biochemical pathways, as well as the mechanisms by which
such interactions modulate the physical properties of intracellular and
multicellular structures.

2. System dynamics. The principles about how a system behaves over time
under various conditions can be understood through metabolic analysis,
sensitivity analysis, dynamic analysis methods such as phase portrait and
bifurcation analysis, and by identifying essential mechanisms underlying
specific behaviors.

3. The control method. The mechanisms that systematically control the
state of the cell can be modulated to minimize malfunctions and provide
potential therapeutic targets for treatment of disease.

4. The design method. Strategies to modify and construct biological systems
having desired properties can be devised based on definite design
principles and simulations.

Computational biology has two distinct branches: (1) knowledge
discovery, or data mining, which extracts the hidden patterns from huge
quantities of experimental data, forming hypotheses as a result, and (2)
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simulation-based analysis, which tests hypotheses with in silico experiments,
providing predictions to be tested by in vitro and in vivo studies [224].

Although traditional bioinformatics has been used widely for genome
analysis, simulation-based approaches have received little mainstream
attention. Current experimental molecular biology is now producing the
high-throughput quantitative data that is needed to support simulation-
based research. At the same time, substantial advances in software and
computational power have enabled the creation and analysis of reasonably
realistic yet intricate biological models [224].

It is crucial for individual research groups to be able to exchange
their models and create commonly accepted repositories and software
environments that are available to all. Systems Biology Markup Language
(SBML) [189], CellML (http://www.cellml.org/), and the Systems Biology
Workbench are examples of efforts that aim to form a de facto standard and
open software platform for modeling and analysis. These efforts significantly
increase the value of the new generation of databases concerned with
biological pathways, such as the Kyoto Encyclopedia of Genes and Genomes
(KEGG), Alliance for Cellular Signaling (AfCS), and Signal Transduction
Knowledge Environment (STKE), by enabling them to develop machine-
executable models rather than merely human-readable forms [224].

Building a full-scale organism model or even a whole-cell or organ model is
a challenging enterprise. Several groups, such as Virtual Cell [348] and E-Cell
[405], have started the process. Multiple aspects of biological processes have
to be integrated and the model predictions must be verified by biological
and clinical data, which are at best sparse for this purpose. Integrating
heterogeneous simulation models is a nontrivial research topic by itself,
requiring integration of data of multiple scales, resolutions, and modalities.

2.9.3 Open Research Problems

The future of bioinformatics and data mining faces many open research
problems in order to meet the requirements of high-throughput biodata
analysis. One of the open problems is data quality maintenance related to
(a) experimental noise, e.g., the hybridization process and microarray spot
irregularities, and (b) the statistical significance of experiments, e.g., the
number of experimental replicas and their variations. Other open problems
include unknown model complexity and visualization difficulties with high-
dimensional data related to our limited understanding of underlying
phenomena. Although dimensionality reduction approaches reduce the
number of data dimensions, they also introduce the problems of feature
selection and feature construction. It has also become very clear over
the last few years that the growing size of bioinformatics data poses
new challenges on file standards, data storage, access, data mining, and
information retrieval. These open research problems can be solved in future
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by forming interdisciplinary teams, consolidating technical terms, introducing
standards, and promoting interdisciplinary education.

How to integrate biological knowledge into the designing and developing of
data mining models and algorithms is an important future research direction.
There exists an extensive amount of information or knowledge about the
biological data. For instance, the functionality of the majority of yeast genes
is captured in the gene ontology (GO). The GO is a directed acyclic graph
(DAG) that illustrates the relationship (similarity) among the genes. If we
can combine this information into the data mining process, e.g., in clustering
algorithms, then we can produce more biologically meaningful clusters with
higher efficiency. Currently, integration of biological knowledge in the data
mining procedure is still a challenging problem. It is desirable to find a way
to represent prior biological knowledge as a model that can be integrated into
the data mining process.

Recently, many researchers have realized that although a good number
of genes have been discovered and have been playing an important role in
the analysis of genetic and proteomic behaviors of biological bodies, the
discovered genes are only about 1% to 2% of human (or animal) genome;
most of the genome belongs to so-called “dark” matter, such as introns and
“junk.” However, recent studies have shown that a lot of biological functions
are strongly influenced or correlated with the dark part of the genome, and
it is a big open problem to find the rules or regularities that may disclose
the mystery of the “dark matter” of a genome. This should be an interesting
research problem that data mining may contribute to as well.

2.10 Conclusions

Both data mining and bioinformatics are fast-expanding and closely related
research frontiers. It is important to examine the important research issues
in bioinformatics and develop new data mining methods for scalable and
effective biodata analysis.

In this chapter, we have provided a short overview of biodata analysis
from a data mining perspective. Although a comprehensive survey of all
kinds of data mining methods and their potential or effectiveness in biodata
analysis is well beyond the task of this short survey, the selective examples
presented here may give readers an impression that a lot of interesting work
has been done in this joint venture. We believe that active interactions
and collaborations between these two fields have just started. It is a highly
demanding and promising direction, and a lot of exciting results will appear
in the near future.
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